miR-99a-5p: A Potential New Therapy for Atherosclerosis by Targeting mTOR and Then Inhibiting NLRP3 Inflammasome Activation and Promoting Macrophage Autophagy.
摘要:
MicroRNAs have been revealed to be involved in the development of atherosclerosis. The present study is aimed at exploring the potential of miR-99a-5p as a therapy for atherosclerosis. We suspected that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy via constraining mTOR, therefore, alleviating atherosclerosis. The cell viability in ox-LDL-induced THP-1 macrophages was assessed by CCK-8 assay. Bioinformatic analysis was used to predict the target genes of miR-99a-5p. The binding between miR-99a-5p and mTOR was confirmed by luciferase reporter assay. In vivo, a high-fat-diet-induced atherosclerosis model was established in apolipoprotein E knockout mice. Hematoxylin-eosin, oil red O, and Sirius red staining were performed for the determination of atherosclerotic lesions. MTOR and associated protein levels were detected by Western blot analysis. miR-99a-5p inhibited NLRP3 inflammasome activation and promoted macrophage autophagy by targeting mTOR. Enforced miR-99a-5p significantly reduced the levels of inflammasome complex and inflammatory cytokines. Furthermore, miR-99a-5p overexpression inhibited the expression of mTOR, whereas mTOR overexpression reversed the trend of the above behaviors. In vivo, the specific overexpression of miR-99a-5p significantly reduced atherosclerotic lesions, accompanied by a significant downregulation of autophagy marker CD68 protein expression. We demonstrated for the first time that miR-99a-5p may be considered a therapy for atherosclerosis. The present study has revealed that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy by targeting mTOR, therefore, alleviating atherosclerosis.
收起
展开
DOI:
10.1155/2022/7172583
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(126)
参考文献(59)
引证文献(7)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无