Development and validation of endoplasmic reticulum stress-related eight-gene signature for predicting the overall survival of lung adenocarcinoma.

来自 PUBMED

作者:

Lin LZhang W

展开

摘要:

The high case-fatality rate of patients with lung adenocarcinoma (LUAD) emphasizes the importance of identifying a robust and reliable prognostic signature for LUAD patients. Endoplasmic reticulum (ER) stress results from protein misfolding imbalance and has been shown to participate in the development of cancer. We aimed to develop and validation a reliable and robust ER stress-related prognostic signature to accurately predict prognosis for patients with LUAD. The mRNA expressions data and the clinical information were downloaded from The Cancer Genome Atlas (TCGA) as training set. The data of external validation sets were downloaded from GEO database with the accession number GSE 30219, GSE 31210, GSE 50081 and GSE 37745. Univariate Cox regression analyses was performed to identify mRNAs associated with overall survival (OS) in LUAD. ER-associated genes were retrieved using GeneCards database. Next, we construct the best risk score model by the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation. Subsequently, predictive models and risk scores were developed in the TCGA training dataset. Cox proportional hazards regression models were used for univariate and multivariate analysis of risk score and clinicopathologic characteristics. As a validation set GSE30219, GSE31210 and (GSE50081+GSE37745) were used to validate the predictive performance of the model in TCGA. Finally, functional enrichment analysis, including the gene ontology (GO) enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways and gene set enrichment analysis (GSEA) were performed to further explore function and mechanisms. A prognostic prediction model based on eight genes was developed in the TCGA training dataset. As expected, in validation sets, patients with higher risk scores were found to have worse prognosis. Time-dependent ROC curve analyses demonstrated that the risk score model was reliable. The nomograms showed excellent predictive ability. Multivariate Cox regression analyses indicated that the risk score was an independent prognostic factor for LUAD. Additionally, functional enrichment analysis showed that the relevant biomarkers were enriched in cell cycle and glycolysis related signaling pathways. The 8-gene signature may enable improved the prediction of clinical events and decisions about management of LUAD.

收起

展开

DOI:

10.21037/tcr-22-106

被引量:

3

年份:

2022

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(481)

参考文献(29)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读