Co-existing polysaccharides affect the systemic exposure of major bioactive ingredients in Chang-Kang-Fang, a multi-herb prescription for treatment of irritable bowel syndrome.

来自 PUBMED

作者:

Zhong PZhou JFan YTGuo MFZhu HZhou SSZhu JHZhang HHZhou GRMiao XLLi SLMao Q

展开

摘要:

Chang-Kang-Fang (CKF) is a traditional Chinese herbal formula used for treatment of irritable bowel syndrome (IBS) in China. Decoction is the administration form of CKF in clinical practice. Previously, CKF has been confirmed with activities of releasing pain and reversing disorders of intestinal propulsion. And alkaloids, monoglycosides, chromones were found as the main bioactive components potentially contributing to the efficacy of CKF. Polysaccharide was also a major constituent in CKF. But if and how polysaccharides influence the systemic exposure of bioactive components in CKF is unknown. In this study, we aimed to demonstrate the contribution of the co-existed polysaccharides on the systemic exposure of the major bioactive components from CKF in normal and IBS model rats. An UPLC-TQ-MS with multiple reaction monitoring (MRM) scan method was developed and validated for quantifying six major small molecular bioactive ingredients of CKF in the plasma samples, including magnoflorine (MAG), berberine (BBR), albiflorin (ALB), paeoniflorin (PAE), 5-O-methylvisamminol (5-OM) and prim-O-glucosylcimifugin (POG). The rats received CKF decoction (CKF) and CKF small molecule portion (knockout of polysaccharides, CKFSM), respectively. IBS model rats were induced by daily bondage and gavage of Sennae Folium decoction (derived from the leaf of Cassia angustifolia Vahl). The effects of the co-existing polysaccharides on the pharmacokinetic parameters of six small molecular bioactive components in normal and IBS model rats were systematically evaluated. The potential gut microbiota involved mechanisms of the effects was validated by broad-spectrum antibiotic (ABX) treatment. The selectivity, precision, accuracy, recovery and matrix effect of the established quantification method were all within acceptable limits of biological sample. In normal rats, the co-existing polysaccharides significantly reduced the AUC(0-t) of MAG and PAE compared with CKFSM group. The Cmax and AUC(0-t) of other four compound were not influenced by co-existing polysaccharides. However, in IBS model rats, compared with CKFSM group, the Cmax and AUC(0-t) of the six ingredients significantly increased in CKF group. For CKF + ABX group, the Cmax of six ingredients decreased significantly when compared with CKF group, and the AUC(0-t) of MAG, BBR, ALB, PAE also reduced with significant differences. A reliable and sensitive UPLC-TQ-MS method was successfully developed and validated for evaluating influence of co-existing polysaccharides on pharmacokinetic behavior of six major small molecules components in CKF. The co-existing polysaccharides enhanced the systemic exposure of six bioactive small molecules in CKF under IBS pathological state potentially via gut microbiota involvement.

收起

展开

DOI:

10.1016/j.jep.2022.115601

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(113)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读