Successive Multiple Ionic-Polymer Layer Coatings for Intact Protein Analysis by Capillary Zone Electrophoresis-Mass Spectrometry: Application to Hemoglobin Analysis.

来自 PUBMED

作者:

Salzer LStolz ADhellemmes LHöchsmann ALeclercq LCottet HNeusüß C

展开

摘要:

Adsorption of analytes, e.g., proteins, often interfere with separation in CE, due to the relatively large surface of the narrow capillary. Coatings often are applied to prevent adsorption and to determine the electroosmotic flow (EOF), which is of major importance for the separation in CE. Successive multiple ionic-polymer layer (SMIL) coatings are frequently used for protein analysis in capillary electrophoresis resulting in high separation efficiency and repeatability. Here, the coating procedure of a five-layer SMIL coating is described using quaternized diethylaminoethyl dextran (DEAEDq) as polycation and poly(methacrylic acid) (PMA) as polyanion. Depending on the analyte, different polyions may be used to increase separation efficiency. However, the coating procedure remains the same.To demonstrate the applicability of SMIL coatings in CE-MS, human hemoglobin was measured in a BGE containing 2 M acetic acid. DEAEDq-PMA coating was found to be the most suitable for hemoglobin analysis due to relatively low reversed electroosmotic mobility leading to increased electrophoretic resolution of closely related proteoforms. Thereby, not only alpha and beta subunit of the hemoglobin could be separated, but also positional isoforms of glycated and carbamylated species were separated within 24 min.

收起

展开

DOI:

10.1007/978-1-0716-2493-7_5

被引量:

0

年份:

2022

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(114)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读