Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy.

来自 PUBMED

作者:

Dash BSLu YJPejrprim PLan YHChen JP

展开

摘要:

We used reduced graphene oxide (rGO), which has two times higher photothermal conversion efficiency than graphene oxide (GO), as a photothermal agent for cancer photothermal therapy (PTT). By conjugating a photosensitizer IR780 to rGO, the IR780-rGO could be endowed with reactive oxygen species (ROSs) generation ability for concurrent photodynamic therapy (PDT). The IR780-rGO was coated with hyaluronic acid (HA) by electrostatic interaction to facilitate its intracellular uptake by U87 glioblastoma cells. The IR780-rGO/HA was loaded with doxorubicin (DOX) for chemotherapy (CT), to develop a pH-responsive drug delivery nano-platform for targeted multimodal cancer CT/PTT/PDT. We fully characterized the properties of all nanocomposites during the synthesis steps. The high loading efficiency of DOX on IR780-rGO-HA provides 3 mg/mg drug loading, while IR780-rGO-HA/DOX shows 3 times higher drug release at endosomal pH value (pH 5) than at pH 7.4. The mechanism for PTT/PDT was confirmed from the ability of IR780-rGO-HA to induce time-dependent temperature rise, synthesis of heat shock protein 70 (HSP70) and generation of intracellular ROSs, after exposure to 808 nm near infrared (NIR) laser light. The nano-vehicle IR780-rGO-HA shows high biocompatibility toward 3T3 fibroblast and U87 cancer cell lines, as well as enhanced intracellular uptake by U87 through active targeting. This translates into increased cytotoxicity of IR780-rGO-HA/DOX, by lowering the drug half-maximal inhibitory concentration (IC50) from 0.7 to 0.46 μg/mL. This IC50 is further decreased to 0.1 μg/mL by irradiation with NIR laser for 3 min at 1.5 W/cm2. The elevated cancer cell killing mechanism was supported from flow cytometry analysis, where the highest cell apoptosis/necrosis rate was observed in combination CT/PTT/PDT. Using xenograft tumor model created by subcutaneous implantation of U87 cells in nude mice, IR780-rGO-HA/DOX delivered through intravenous (IV) injection and followed with 808 nm laser treatment for 5 min at 1.5 W/cm2 results in the lowest tumor growth rate, with negligible change of tumor volume from its original value at the end 20-day observation period. The therapeutic efficacy was supported from inhibited cell proliferation rate, increased cell apoptosis rate, and increased production of HSP70 from immunohistochemical staining of tumor tissue slices. The safety of the NIR-assisted multimodal cancer treatment could be confirmed from non-significant change of body weight and hematological parameters of blood sample. Taken together, we conclude that IV delivery of IR780-rGO-HA/DOX plus NIR laser treatment is an effective nanomedicine approach for combination cancer therapy.

收起

展开

DOI:

10.1016/j.bioadv.2022.212764

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(690)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读