-
Consuming microplastics? Investigation of commercial salts as a source of microplastics (MPs) in diet.
The omnipresence of microplastics (MPs) in marine and terrestrial environments as a pollutant of concern is well established and widely discussed in the literature. However, studies on MP contamination in commercial food sources like salts from the terrestrial environment are scarce. Thus, this is the first study to investigate various varieties of Australian commercial salts (both terrestrial and marine salts) as a source of MPs in the human diet, and the first to detect MPs in black salt. Using Nile red dye, the MPs were detected and counted under light microscopy, further characterised using attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS). Of all the 90 suspected particles, 78.8% were identified as MPs with a size ranging between 23.2 µm and 3.9 mm. The fibres and fragments constituted 75.78% and 24.22% respectively. Among the tested samples, Himalayan pink salt (coarse) from terrestrial sources was found to have the highest MP load, i.e. 174.04 ± 25.05 (SD) particle/kg, followed by black salt at 157.41 ± 23.13 particle/kg. The average concentration of detected MPs in Australian commercial salts is 85.19 ± 63.04 (SD) per kg. Polyamide (33.8%) and polyurethane (30.98%) were the dominant MP types. Considering the maximum recommended (World Health Organization) salt uptake by adults daily at 5 g, we interpret that an average person living in Australia may be ingesting approximately 155.47 MPs/year from salt uptake. Overall, MP contamination was higher in terrestrial salts (such as black and Himalayan salt) than the marine salt. In conclusion, we highlight those commercial salts used in our daily lives serve as sources of MPs in the diet, with unknown effects on human health.
Kuttykattil A
,Raju S
,Vanka KS
,Bhagwat G
,Carbery M
,Vincent SGT
,Raja S
,Palanisami T
... -
《-》
-
Defining the optimum strategy for identifying adults and children with coeliac disease: systematic review and economic modelling.
Elwenspoek MM
,Thom H
,Sheppard AL
,Keeney E
,O'Donnell R
,Jackson J
,Roadevin C
,Dawson S
,Lane D
,Stubbs J
,Everitt H
,Watson JC
,Hay AD
,Gillett P
,Robins G
,Jones HE
,Mallett S
,Whiting PF
... -
《-》
-
Microplastics in Morocco's most consumed fisheries: Chemical characterization, ecological traits, and implications for human health.
The pervasive presence of microplastics (MPs) in the environment is well established, yet many critical questions remain about their distribution and potential impacts on both ecological and human health. To assess the risks that MPs pose, especially through marine ecosystems and human consumption, monitoring their ingestion by fish in natural environments is essential. This study investigated the contamination of 12 fish species, the most commonly consumed in Morocco, collected from the Atlantic Ocean off the Moroccan coast. Analysis of 240 fish (20 individuals per species) revealed that 100 % of the samples contained microplastics. MPs were detected in the gills, gonads, and gastrointestinal tracts of all 12 species. The average abundance of microplastics per fish ranged from 20.6 to 133.2 MPs, with the forms identified as fragments (60 %), fibers (30 %), films (8 %), and pellets and foams (1 %). Additionally, omnivorous and demersal species presented the highest levels of MP contamination. Infrared spectroscopy (ATR-FTIR) analysis identified seven polymers, with high-density polyethylene (34 %), polyethylene terephthalate (30 %), and polypropylene (17.5 %) being the most prevalent. The microplastics were predominantly dark or light in color, with a notable presence of red and blue particles. Fish ingest various sizes of microplastics, primarily particles smaller than 1 mm. Scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX) revealed that most MPs exhibited visible signs of weathering and contained inorganic components on their surfaces. The potential risk of MPs to fish, as assessed by the polymer hazard index (PHI), was categorized as level V, indicating that MPs may pose significant risks to human health. The highest estimated daily intake (EDI) of microplastics was found in children (1620 MPs/year), whereas the lowest intake was estimated in women (350 MPs/year) and men (337 MPs/year). Given the widespread presence of microplastics in commonly consumed fish species in Morocco, there is an urgent need for regulatory measures to ensure the safety of fisheries, both for domestic consumption and export. Policymakers should consider the development of guidelines for acceptable levels of microplastic contamination in fish to safeguard public health.
Ouheddou M
,Abelouah MR
,Ben-Haddad M
,Hajji S
,Laaraj NE
,Akhouchal I
,Barra I
,Rangel-Buitrago N
,Agnaou M
,Alla AA
... -
《-》
-
Are there plastic particles in my sugar? A pioneering study on the characterization of microplastics in commercial sugars and risk assessment.
Although several studies are confirming the ubiquity of microplastics (MPs) in environments, our knowledge about their effects on human health is still very limited. Therefore, while we have not gathered definitive information on their consequences, studies that aim to identify the MPs sources constitute subsidies to better understand the various exposure pathways to these pollutants. Thus, we investigated the possible presence of MP-like particles in five brands of commercial sugars and two unpacked, unbranded, and unlabeled sugars (hereinafter referred to as "non-branded"), obtained from different supermarkets in Dhaka (Bangladesh). Surprisingly, MPs-like particles were identified in all analyzed samples and taken together, our data demonstrated similar variations (between branded and non-branded samples) in terms of number, size, shape, color, and polymer composition. The number of plastic particles/kg sugar was, on average, 343.7 ± 32.08 (mean ± SEM), having been observed a tendency for a higher frequency of MPs < 300 μm. Overall, microfibers and spherules were the most and the predominant colors of MPs (in general) were black, pink, blue, and brown. The FT-IR analysis confirmed the chemical nature of MPs (in branded and non-branded), having identified nine polymeric types (ABS, PCV, PET, EVA, CA, PTFE, HDPE, PC, and nylon), being ABS and PVC the most frequent. Furthermore, we estimate that sugar consumption in Dhaka City can cause the ingestion of millions of tons of MPs annually (2.4 to 25.6 tons) (with an average of 10.2 tons). Our study is the most comprehensive report on the MP's occurrence in sugar, confirming that the ingestion of this food constitutes an important route of human exposure to these micropollutants and, therefore, serves as a baseline for future assessments and useful for generating efficient strategies to control MPs.
Afrin S
,Rahman MM
,Hossain MN
,Uddin MK
,Malafaia G
... -
《-》
-
Multimodal detection and analysis of microplastics in human thrombi from multiple anatomically distinct sites.
Microplastic (MP) pollution has emerged as a significant environmental concern worldwide. While extensive research has focused on their presence in marine organisms and ecosystems, their potential impact on human health, particularly on the circulatory system, remains understudied. This project aimed to identify and quantify the mass concentrations, polymer types, and physical properties of MPs in human thrombi surgically retrieved from both arterial and venous systems at three anatomically distinct sites, namely, cerebral arteries in the brain, coronary arteries in the heart, and deep veins in the lower extremities. Furthermore, this study aimed to investigate the potential association between the levels of MPs and disease severity.
Thrombus samples were collected from 30 patients who underwent thrombectomy procedures due to ischaemic stroke (IS), myocardial infarction (MI), or deep vein thrombosis (DVT). Pyrolysis-gas chromatography mass spectrometry (Py-GC/MS) was employed to identify and quantify the mass concentrations of the MPs. Laser direct infrared (LDIR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the physical properties of the MPs. Demographic and clinical information were also examined. A rigorous quality control system was used to eliminate potential environmental contamination.
MPs were detected by Py-GC/MS in 80% (24/30) of the thrombi obtained from patients with IS, MI, or DVT, with median concentrations of 61.75 μg/g, 141.80 μg/g, and 69.62 μg/g, respectively. Among the 10 target types of MP polymers, polyamide 66 (PA66), polyvinyl chloride (PVC), and polyethylene (PE) were identified. Further analyses suggested that higher concentrations of MPs may be associated with greater disease severity (adjusted β = 7.72, 95% CI: 2.01-13.43, p < 0.05). The level of D-dimer in the MP-detected group was significantly higher than that in the MP-undetected group (8.3 ± 1.5 μg/L vs 6.6 ± 0.5 μg/L, p < 0.001). Additionally, LDIR analysis showed that PE was dominant among the 15 types of identified MPs, accounting for 53.6% of all MPs, with a mean diameter of 35.6 μm. The shapes of the polymers detected using LDIR and SEM were found to be heterogeneous.
This study presents both qualitative and quantitative evidence of the presence of MPs, and their mass concentrations, polymer types, and physical properties in thrombotic diseases through the use of multimodal detection methods. Higher concentrations of MPs may be associated with increased disease severity. Future research with a larger sample size is urgently needed to identify the sources of exposure and validate the observed trends in the study.
This study was funded by the SUMC Scientific Research Initiation Grant (SRIG, No. 009-510858038), Postdoctoral Research Initiation Grant (No. 202205230031-3), and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG02C).
Wang T
,Yi Z
,Liu X
,Cai Y
,Huang X
,Fang J
,Shen R
,Lu W
,Xiao Y
,Zhuang W
,Guo S
... -
《EBioMedicine》