-
Panax notoginseng Saponins Protect Brain Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Resupply-Induced Necroptosis via Suppression of RIP1-RIP3-MLKL Signaling Pathway.
Recently, necroptosis has emerged as one of the important mechanisms of ischemia stroke. Necroptosis can be rapidly activated in endothelial cells to cause vascular damage and neuroinflammation. Panax notoginseng saponins (PNS), an ingredient extracted from the root of Panax notoginseng (Burk.) F.H. Chen, was commonly used for ischemic stroke, while its molecular mechanism and targets have not been fully clarified. Our study aimed to clarify the anti-necroptosis effect of PNS by regulating RIP1-RIP3-MLKL signaling pathway in brain microvascular endothelial cells (BMECs) subjected to transient oxygen-glucose deprivation (OGD/resupply [R]). In vitro, the necroptosis model of rat BMECs was established by testing the effect of OGD/R in the presence of the pan-caspase inhibitor z-VAD-FMK. After administration of PNS and Nec-1, cell viability, cell death modality, the expression of RIP1-RIP3-MLKL pathway and mitochondrial membrane potential (Δψm) level were investigated in BMECs upon OGD/R injury. The results showed that PNS significantly enhanced cell viability of BMECs determined by CCK-8 analysis, and protected BMECs from necroptosis by Flow cytometry and TEM. In addition, PNS inhibited the phosphorylation of RIP1, RIP3, MLKL and the downstream expression of PGAM5 and Drp1, while similar results were observed in Nec-1 intervention. We further investigated whether PNS prevented the Δψm depolarization. Our current findings showed that PNS effectively reduced the occurrence of necroptosis in BMECs exposed to OGD/R by inhibition of the RIP1-RIP3-MLK signaling pathway and mitigation of mitochondrial damage. This study provided a novel insight of PNS application in clinics.
Hu Y
,Lei H
,Zhang S
,Ma J
,Kang S
,Wan L
,Li F
,Zhang F
,Sun T
,Zhang C
,Li W
... -
《-》
-
Total Saponins of Panax Notoginseng Modulate the Astrocyte Inflammatory Signaling Pathway and Attenuate Inflammatory Injury Induced by Oxygen- Glucose Deprivation/Reperfusion Injury in Rat Brain Microvascular Endothelial Cells.
Reperfusion after cerebral ischemia causes brain injury. Total saponins of Panax notoginseng (PNS) have potential roles in protecting against cerebral ischemia-reperfusion injury. However, whether PNS regulates astrocytes on oxygen-glucose deprivation/reperfusion (OGD/R) injury in rat brain microvascular endothelial cells (BMECs) and its mechanism still need further clarification.
Rat C6 glial cells were treated with PNS at different doses. Cell models were established by exposing C6 glial cells and BMECs to OGD/R. Cell viability was assessed, and levels of nitrite concentration, inflammatory factors (iNOS, IL-1β, IL-6, IL-8, TNF-α), and oxidative stress-related factors (MDA, SOD, GSH-Px, T-AOC) were subsequently measured through CCK8, Grice analysis, Western blot, and ELISA, respectively. The co-cultured C6 and endothelial cells were treated with PNS for 24 hours before model establishment. Then transendothelial electrical resistance (TEER), lactate dehydrogenase (LDH) activity, brain-derived neurotrophic factor (BDNF) content, and mRNA and protein levels and positive rates of tight junction proteins [Claudin-5, Occludin, ZO-1] were measured by a cell resistance meter, corresponding kits, ELISA, RT-qPCR, Western blot, and immunohistochemistry, respectively.
PNS had no cytotoxicity. PNS reduced iNOS, IL-1β, IL-6, IL-8, and TNF-α levels in astrocytes, promoted T-AOC level and SOD and GSH-Px activities, and inhibited MDA levels, thus inhibiting oxidative stress in astrocytes. In addition, PNS alleviated OGD/R injury, reduced Na-Flu permeability, and enhanced TEER, LDH activity, BDNF content, and levels of tight junction proteins Claudin-5, Occludin, ZO-1 in the culture system of astrocytes and rat BMECs after OGD/R.
PNS repressed astrocyte inflammation and attenuated OGD/R injury in rat BMECs.
Wei X
,Wen Y
,Hu Y
,Guo X
... -
《-》
-
Panax notoginseng Saponins Protect Cerebral Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Reperfusion-Induced Barrier Dysfunction via Activation of PI3K/Akt/Nrf2 Antioxidant Signaling Pathway.
Hu S
,Wu Y
,Zhao B
,Hu H
,Zhu B
,Sun Z
,Li P
,Du S
... -
《MOLECULES》
-
Panax notoginseng saponins provide neuroprotection by regulating NgR1/RhoA/ROCK2 pathway expression, in vitro and in vivo.
Panax notoginseng saponins (PNS) extracted from a traditional Chinese herbal medicine, Panax notoginseng (Burkill) F.H. Chen (Araliaceae), which has been extensively used in treating coronary heart disease, ischemic cerebrovascular disease and hemorrhagic disorders in China over hundreds of years.
This study explored whether panax notoginseng saponins (PNS) provided neuroprotective effects by inhibiting the expressions of NgR1, RhoA, and ROCK2 following middle cerebral artery occlusion in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) injury in SH-SY5Y cells.
2,3,5-Triphenyltetrazolium chloride staining was used to determine successful middle cerebral artery occlusion establishment in sham-operated and operated Sprague-Dawley rats 1 day after injury. The rats were randomly separated into sham, model, NEP1-40, PNS, and NEP1-40 plus PNS (N+P) groups. After 7 days of treatment, body mass and neurological deficit scores were analyzed. Tissues were harvested and analyzed by hematoxylin-eosin staining and immunohistochemical analysis, western blotting, and quantitative real-time PCR (qRT-PCR). The optimal drug concentration of NEP1-40 and PNS on SH-SY5Y cells exposed to OGD/R injury was determined by CCK8 analysis. qRT-PCR was used to measure mRNA expression profiles of NgR1, RhoA, and ROCK2 in SH-SY5Y cells subjected to OGD/R.
The results showed that MCAO surgery successfully produced an infarct, and the PNS, NEP1-40, and N+P groups exhibited increased body mass and ameliorated neurological deficits compared with the model group. NEP1-40 treatment markedly reduced NgR1 and RhoA overexpression when compared to the model group, although there was no significant difference in ROCK2 expression. PNS and N+P treatment significantly decreased NgR1, RhoA, and ROCK2 overexpression compared with the model group. However, N+P treatment did not result in a synergistic effect, as assessed by immunohistochemistry, western blotting, and qRT-PCR. Following optimal administration of PNS (160μg/ml) and NEP1-40 (10ng/ml) on SH-SY5Y cells exposed to OGD/R injury, cell viability in the NEP1-40, PNS, and N+P groups significantly increased compared with the model group, as assessed by CCK8 analysis. Additionally, NgR1, RhoA, and ROCK2 mRNA expression profiles were significantly less in the NEP1-40, PNS, and N+P groups compared with the model group.
PNS provided neuroprotective effects in a rat model of cerebral ischemia and SH-SY5Y cells exposed to oxygen/glucose deprivation injury by inhibiting the overexpression of NgR1, RhoA, and ROCK2.
Shi X
,Yu W
,Yang T
,Liu W
,Zhao Y
,Sun Y
,Chai L
,Gao Y
,Dong B
,Zhu L
... -
《-》
-
Resveratrol inhibits necroptosis by mediating the TNF-α/RIP1/RIP3/MLKL pathway in myocardial hypoxia/reoxygenation injury.
Resveratrol (RES) protects myocardial cells from hypoxia/reoxygenation (H/R)-caused injury. However, the mechanism of this effect has not been clarified. Thus, in this study, we aimed to determine whether RES attenuates H/R-induced cell necroptosis by inhibiting the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed-lineage kinase domain-like (MLKL) signaling pathway. Rat myocardial ischemia/reperfusion (I/R) models and H/R-injured cell models were constructed. Our study showed that myocardial H/R injury significantly increased the levels of TNF-α, RIP1, RIP3, and p-MLKL/MLKL by western blot analysis. Cell viability assay and 4,6-dianmidino-2-phenylindole (DAPI)-propidium iodide staining showed that the cell viability was decreased, and necroptosis was increased after myocardial H/R injury. The expressions of TNF-α, RIP1, RIP3, and p-MLKL/MLKL in H/R myocardial cells treated with different concentrations of RES were significantly downregulated. In addition, we also found that the cell viability was increased and necroptosis was decreased in dose-dependent manners when H/R-injured cells were treated with RES. In addition, the enhanced effect of TNF-α on necroptosis in myocardial H/R-injured cells was improved by RES, and the effect of RES was confirmed in vivo in I/R rats. This study also showed that RES suppresses necroptosis in H9c2 cells, which may occur through the inhibition of the TNF-α/RIP1/RIP3/MLKL signaling pathway. Our data suggest that necroptosis is a promising therapeutic target and may be a promising therapeutic target for the treatment of myocardial I/R injury.
Hu Y
,Pan H
,Peng J
,He J
,Tang M
,Yan S
,Rong J
,Li J
,Zheng Z
,Wang H
,Liu Y
,Zhong X
... -
《-》