Simultaneous compression of multiple error-corrected short-read sets for faster data transmission and better de novo assemblies.

来自 PUBMED

作者:

Tang THutvagner GWang WLi J

展开

摘要:

Next-Generation Sequencing has produced incredible amounts of short-reads sequence data for de novo genome assembly over the last decades. For efficient transmission of these huge datasets, high-performance compression algorithms have been intensively studied. As both the de novo assembly and error correction methods utilize the overlaps between reads data, a concern is that the will the sequencing errors bring up negative effects on genome assemblies also affect the compression of the NGS data. This work addresses two problems: how current error correction algorithms can enable the compression algorithms to make the sequence data much more compact, and whether the sequence-modified reads by the error-correction algorithms will lead to quality improvement for de novo contig assembly. As multiple sets of short reads are often produced by a single biomedical project in practice, we propose a graph-based method to reorder the files in the collection of multiple sets and then compress them simultaneously for a further compression improvement after error correction. We use examples to illustrate that accurate error correction algorithms can significantly reduce the number of mismatched nucleotides in the reference-free compression, hence can greatly improve the compression performance. Extensive test on practical collections of multiple short-read sets does confirm that the compression performance on the error-corrected data (with unchanged size) significantly outperforms that on the original data, and that the file reordering idea contributes furthermore. The error correction on the original reads has also resulted in quality improvements of the genome assemblies, sometimes remarkably. However, it is still an open question that how to combine appropriate error correction methods with an assembly algorithm so that the assembly performance can be always significantly improved.

收起

展开

DOI:

10.1093/bfgp/elac016

被引量:

0

年份:

2022

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(255)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读