Artificial Intelligence Allows Leaving-In-Situ Colorectal Polyps.
摘要:
Artificial Intelligence (AI) could support cost-saving strategies for colonoscopy because of its accuracy in the optical diagnosis of colorectal polyps. However, AI must meet predefined criteria to be implemented in clinical settings. An approved computer-aided diagnosis (CADx) module for differentiating between adenoma and nonadenoma in unmagnified white-light colonoscopy was used in a consecutive series of colonoscopies. For each polyp, CADx output and subsequent endoscopist diagnosis with advanced imaging were matched against the histology gold standard. The primary outcome was the negative predictive value (NPV) of CADx for adenomatous histology for ≤5-mm rectosigmoid lesions. We also calculated the NPV for AI-assisted endoscopist predictions, and agreement between CADx and histology-based postpolypectomy surveillance intervals according to European and American guidelines. Overall, 544 polyps were removed in 162 patients, of which 295 (54.2%) were ≤5-mm rectosigmoid histologically verified lesions. CADx diagnosis was feasible in 291 of 295 (98.6%), and the NPV for ≤5-mm rectosigmoid lesions was 97.6% (95% CI, 94.1%-99.1%). There were 242 of 295 (82%) lesions that were amenable for a leave-in-situ strategy. Based on CADx output, 212 of 544 (39%) would be amenable to a resect-and-discard strategy, resulting in a 95.6% (95% CI, 90.8%-98.0%) and 95.9% (95% CI, 89.8%-98.4%) agreement between CADx- and histology-based surveillance intervals according to European and American guidelines, respectively. A similar NPV (97.6%; 95% CI, 94.8%-99.1%) for ≤5-mm rectosigmoids was achieved by AI-assisted endoscopists assessing polyps with electronic chromoendoscopy, with a CADx-concordant diagnosis in 97.2% of cases. In this study, CADx without advanced imaging exceeded the benchmarks required for optical diagnosis of colorectal polyps. CADx could help implement cost-saving strategies in colonoscopy by reducing the burden of polypectomy and/or pathology. gov registration number: NCT04884581.
收起
展开
DOI:
10.1016/j.cgh.2022.04.045
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(261)
参考文献(0)
引证文献(22)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无