Whole-Genome DNA Methylation Analysis in Brassica rapa subsp. perviridis in Response to Albugo candida Infection.

来自 PUBMED

作者:

Tirnaz SMiyaji NTakuno SBayer PEShimizu MAkter MAEdwards DBatley JFujimoto R

展开

摘要:

DNA methylation is an epigenetic mark associated with several mechanisms in plants including immunity mechanisms. However, little is known about the regulatory role of DNA methylation in the resistance response of Brassica species against fungal diseases. White rust, caused by the fungus Albugo candida, is one of the most widespread and destructive diseases of all the cultivated Brassica species, particularly Brassica rapa L. and Brassica juncea (L.) Czern and Coss. Here, we investigate whole-genome DNA methylation modifications of B. rapa subsp. perviridis in response to white rust. As a result, 233 and 275 differentially methylated regions (DMRs) in the susceptible cultivar "Misugi" and the resistant cultivar "Nanane" were identified, respectively. In both cultivars, more than half of the DMRs were associated with genes (DMR-genes). Gene expression analysis showed that 13 of these genes were also differentially expressed between control and infected samples. Gene ontology enrichment analysis of DMR genes revealed their involvement in various biological processes including defense mechanisms. DMRs were unevenly distributed around genes in susceptible and resistant cultivars. In "Misugi," DMRs tended to be located within genes, while in "Nanane," DMRs tended to be located up and downstream of the genes. However, CG DMRs were predominantly located within genes in both cultivars. Transposable elements also showed association with all three sequence contexts of DMRs but predominantly with CHG and CHH DMRs in both cultivars. Our findings indicate the occurrence of DNA methylation modifications in B. rapa in response to white rust infection and suggest a potential regulatory role of DNA methylation modification in defense mechanisms which could be exploited to improve disease resistance.

收起

展开

DOI:

10.3389/fpls.2022.849358

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(131)

参考文献(67)

引证文献(4)

来源期刊

Frontiers in Plant Science

影响因子:6.62

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读