-
Bayesian approach for genetic analysis of production and reproduction traits in Jersey crossbred cattle.
The knowledge of genetic parameters of performance traits is crucial for any breeding programme in dairy animals. The present study was conducted to use a Bayesian approach for estimation of genetic parameters of production and reproduction traits in Jersey crossbred cattle. Data of Jersey crossbred cattle maintained at Eastern Regional Station, National Dairy Research Institute, West Bengal spread over a span of 41 years were utilized. The marginal posterior medians of heritability for 305-day milk yield (305MY), total milk yield (TMY), peak yield (PY), lactation length (LL), calving interval (CI), total milk yield per day of lactation length (TMY/LL) and total milk yield per day of calving interval (TMY/CI) were 0.31 ± 0.07, 0.29 ± 0.07, 0.27 ± 0.06, 0.16 ± 0.05, 0.15 ± 0.05, 0.29 ± 0.06, 0.27 ± 0.06, respectively. Moderate heritability estimates for 305MY, TMY, PY and production efficiency traits indicate the presence of adequate additive genetic variance in these traits to respond to selection combined with better herd management. Repeatability estimates for 305MY, TMY, PY, LL, CI, TMY/LL and TMY/CI were 0.57 ± 0.08, 0.58 ± 0.08, 0.51 ± 0.07, 0.34 ± 0.06, 0.31 ± 0.06, 0.54 ± 0.07 and 0.49 ± 0.07, respectively. Repeatability estimates for 305MY, TMY and PY were high in the current study, suggesting the use of first lactation records for early evaluation of Jersey crossbred cattle for future selection. Genetic correlations varied from 0.21 to 0.97 and maximum genetic correlation was observed between 305MY and TMY indicating that consideration of 305MY instead of TMY in breeding programmes would suffice. Positive genetic correlations of CI with 305MY and TMY indicated the antagonistic association between production and reproduction traits.
Ratwan P
,Kumar M
,Mandal A
《-》
-
Estimation of genetic parameters for production and reproductive traits in Indian Karan-Fries cattle using multi-trait Bayesian approach.
Estimates of variance components are needed for implementing genetic selection. This study was conducted to genetic parameters for production and reproductive traits on Indian Karan-Fries cattle using multi-trait repeatability animal model. Data collected from ICAR-National Dairy Research Institute, Karnal, India (from 1988 to 2019) were used. Single-trait and multi-trait repeatability animal models were used for parameter estimation. The posterior mean of Heritability estimates for 305-day milk yield (305-DMY), lactation milk yield (LMY), lactation length (LL) were 0.20 ± 0.03, 0.19 ± 0.03 and 0.06 ± 0.02, respectively. For age at first calving (AFC), calving interval (CI), and days open (DO), the posterior mean of heritability estimates were 0.24 ± 0.08, 0.06 ± 0.01, and 0.07 ± 0.02, respectively. The repeatability estimates for 305-DMY, LMY, LL, CI, and DO were 0.37 ± 0.02, 0.34 ± 0.02, 0.15 ± 0.02, 0.09 ± 0.02, and 0.12 ± 0.02, respectively. Genetic correlation between milk production traits (305-DMY, LMY, and LL) was positive and strong (> 0.80). However, the genetic correlation between milk production trait and AFC ranges from - 0.31 to 0.12. Unfavorable strong genetic correlations were observed between production and reproductive traits (CI and DO) with values ranged from 0.5 to 0.7. Phenotypic correlations among 305-DMY, LMY, and LL were generally positive and high. The moderate heritability estimates and potential genetic variation for 305-DMY, TMY, and AFC suggested that genetic gain can be obtained for these traits through genetic selection. Low heritability estimates found for LL, CI and DO, indicating that the possibility of changing these traits through genetic selection is small. High genetic correlation observed between productive and fertility traits were unfavorable. The existed strong genetic and phenotypic correlation estimates between CI and DO indicates that recording only one of them would be sufficient in the herd. As the multi-trait model showed slight improvements in the h as well as r estimates for both productive and reproductive traits over univariate analysis, future selection with a multi-trait animal model applying Bayesian approach would be recommended.
Worku D
,Gowane GR
,Kumar R
,Joshi P
,Gupta ID
,Verma A
... -
《-》
-
Optimizing selection strategy for enhancing reproduction efficiency in Indian crossbred goats using milk productivity as a selection criterion.
The present study was aimed at optimizing the selection strategy for enhancing reproductive efficiency and milk productivity of Alpine × Beetal crossbred goats. The data set included 2949 milk trait records across parities and 1389 milk records from first parity and corresponding reproductive traits. The traits included for analysis were 150-day milk yield (150DMY), days in milk (DIM), peak yield (PY) and total milk yield (TMY). The litter size (LS) and litter weight (LW) were used for specifically formulating selection plan using indirect selection. The least squares mean for lactation traits during the first parity were 150DMY: 195.32 ± 2.09 kg, DIM: 236.42 ± 3.04 days, PY: 1.82 ± 0.02 kg, TMY: 269.62 ± 4.52 kg. Notably, Alpine × Beetal goats demonstrated genetic superiority pan India for milk productivity as compared to other native goat breeds. The least squares mean for 150DMY across all parities was 236 ± 3.13 kg. An animal model employing average information restricted maximum likelihood was used for (co)variance component estimation to get the genetic parameters. The analysis revealed total heritability estimates for 150DMY, DIM, PY and TMY as 0.18 ± 0.06, 0.04 ± 0.04, 0.12 ± 0.06 and 0.08 ± 0.05, respectively. Repeatability estimates for 150DMY, DIM, and TMY were 0.28 ± 0.04, 0.21 ± 0.03 and 0.37 ± 0.03, respectively. Bivariate analysis of 150DMY with reproductive traits revealed heritability for LS and LW as 0.05 ± 0.01 and 0.10 ± 0.01, respectively using Gibbs sampling. Strong and positive genetic correlations of 150DMY with other production and reproduction traits was observed, such as DIM (0.72), PY (0.98), TMY (0.88), LS (0.57) and LW (0.33). Moderate heritability and repeatability estimate of 150DMY, along with its positive correlation with production and reproductive traits suggested it as a suitable selection criterion for early selection and overall genetic progress of lactation traits. The genetic trend analysis showed an overall improvement in all these traits, with observed gain of 98.4 g per year for 150DMY, 0.04 days per year for DIM, 0.5 g per year for PY and 220.5 g per year for TMY. We observed that selecting based on 150DMY would lead to a favourable indirect improvement for LW as 79 g and LS 0.04 units per generation. We, therefore, recommend employing 150DMY as the single trait selection criteria to enhance both milk productivity and reproductive potential of Alpine × Beetal goats.
Upadhyay A
,Alex R
,Sahoo S
,Khan KD
,Das P
,Dige MS
,Vohra V
,Gowane GR
... -
《-》
-
Genetic relationships between reproductive and production traits in Jersey crossbred cattle.
The study aimed to estimate the genetic parameters of different reproductive traits namely age at first calving (AFC), calving interval (CI), days open (DO) and number of service per conception (NSPC) and their associations with productive traits including 305-day milk yield (305DMY), total lactation milk yield (TLMY) and lactation length (LL) of Jersey crossbred cattle maintained at Kalyani, Nadia, West Bengal, India. Genetic parameters of reproductive traits and their correlations with productive traits were estimated by Restricted Maximum Likelihood method and Bayesian approach. Using both analytical approaches, the estimates of heritability for AFC, CI, DO and NSPC ranged from 0.12 -0.15, 0.05-0.08, 0.08-0.09 and 0.04-0.06, respectively. Low proportion of variances associated with permanent environmental effect of animals (c effect) were detected for CI (0.08-0.10), DO (0.09-0.11) and NSPC (0.05-0.06) in both the methods. Repeatability measures for all the reproductive traits considered in this study were low to moderate in nature, which ranged from 0.09 to 0.17. Genetic correlations between different reproductive traits were positive and low (0.05) to high (0.98) in magnitude except AFC-NSPC. Low and negative genetic correlations of AFC with 305DMY and TLMY were favourable and indicated animals with high milk yield had early age of maturity. Positive genetic correlations between CI, DO and NSPC with all production traits implied the antagonism relationships among these traits, therefore in any breeding program for improvement of production traits via selection, the reproductive traits should be taken into account as well.
Roy I
,Rahman M
,Karunakaran M
,Gayari I
,Baneh H
,Mandal A
... -
《-》
-
Genetic aspects of Wood's lactation curve parameters in Jersey crossbred cattle using Bayesian approach.
The study was undertaken to estimate the genetic parameters of lactation curve parameters of Wood's function in Jersey crossbred cattle using the Bayesian approach. Data on 33,906 fortnightly test day milk yields of 1,718 lactation records of Jersey crossbred cows, maintained at the ICAR-National Dairy Research Institute in West Bengal, were collected over a period of 40 years. The lactation curve parameters including '' (initial milk yield after calving), '' (ascending slope up to peak yield) and '' (descending slope after peak yield) and lactation curve traits, peak yield (), time of peak yield () and persistency of milk yield () of individual cow for each lactation were estimated using the incomplete gamma function (Wood's model) by fitting the Gauss-Newton algorithm as an iteration method using PROC NLIN procedure of SAS 9.3. Variance components and genetic parameters of lactation curve parameters/traits were estimated by a repeatability animal model using the Bayesian approach. Estimates of heritabilities were found to be 0.18 ± 0.05, 0.09 ± 0.03 and 0.11 ± 0.04 for parameters '', '' and '', respectively and 0.24 ± 0.05, 0.12 ± 0.04, and 0.15 ± 0.05 for , and P, respectively. Repeatability estimates were 0.31 ± 0.03, 0.21 ± 0.04 and 0.30 ± 0.04 for parameters '', '' and '' respectively and 0.39 ± 0.03, 0.24 ± 0.03 and 0.37 ± 0.03 for , and , respectively. Genetic correlations among lactation curve parameters/traits ranged from -0.75 to 0.95. Existence of genetic correlations among lactation curve parameters/traits indicated substantial genetic and physiological relationships among lactation curve parameters/traits of Jersey crossbred cattle.
Rahman M
,Baneh H
,Gayari I
,Karunakaran M
,Raja TV
,Deb SM
,Mandal A
... -
《-》