-
Retail chicken giblets contaminated with extended-spectrum cephalosporin- and carbapenem-resistant Salmonella enterica carrying blaCMY-2.
Chickens are considered as the main source of Salmonella, with infection potentially spreading to the public through outlets. The study aimed to investigate poultry shops for Salmonella enterica resistant to extended-spectrum cephalosporins-resistant (ESCR) and carbapenems-resistant (CR).
Samples were collected from chicken giblets, water tanks, and workers at retail shops. Salmonella was isolated and serotyped; the presence of invA, stn, ompA, and ompF was determined using polymerase chain reaction (PCR). The isolates were tested for ESCR and CR by a disk-diffusion test; a confirmatory extended-spectrum β-lactamase (ESBL) test was performed by combinational disk-diffusion test with clavulanic acid. The resistant isolates were screened for ESBL (blaTEM, blaSHV, blaCTX-M, and blaOXA-1), AmpC blaCMY-2, and carbapenemase (blaKPC, blaNDM, and blaOXA-48) genes using PCR.
S. enterica was isolated from chicken giblets (13/129) and the 13 isolates were ESCR. Based on the confirmatory ESBL test and CR, the 13 isolates were classified into the following resistance phenotypes: ESBL-producing and CR (n=4), ESBL-producing (n=1), non-ESBL-producing and CR (n=6), and non-ESBL-producing (n=2). All the five isolates with ESBL-producing phenotype carried predominantly blaTEM, blaSHV, and blaCMY-2. Regardless of being phenotypically CR, none of these isolates carried any of the tested carbapenemase genes. Surprisingly, the isolates with non-ESBL phenotype were found to carry blaTEM, blaSHV, and blaCMY-2. The blaKPC was present mainly in the isolates with non-ESBL and CR phenotypes. Interestingly, two isolates of the non-ESBL and CR phenotype showed resistance to cefepime, the fourth generation cephalosporins. Salmonella was also recovered from the water tanks (2/7) and the workers (2/16). The four isolates were ESCR and showed a non-ESBL-producing and CR phenotype; they harbored blaTEM, blaSHV, blaOXA-1, and blaKPC. The blaCMY-2 was found in one isolate from water and one from humans. All Salmonella isolates carried invA, stn, ompA, and ompF.
Virulent ESCR S. enterica were identified in retail shops. The isolates carried blaCMY-2 and ESBL-genes, with a high proportion showing CR. Transmission of such strains to humans through food leads us to recommend regular inspection of retail outlets for antibiotic-resistant bacteria.
Abdel-Kader F
,Hamza E
,Abdel-Moein KA
,Sabry MA
... -
《-》
-
Extended-spectrum β-lactamase-producing Salmonella serovars among healthy and diseased chickens and their public health implication.
This study investigated the occurrence of extended-spectrum β-lactamase (ESBL)-producing Salmonella and the associated virulence genes among farmed chickens.
Cloacal swab samples were collected from apparently healthy and diseased chickens and were cultured for Salmonella using conventional methods. The isolates were serotyped using slide agglutination tests and were examined by polymerase chain reaction (PCR) for the virulence genes invA, stn, svpC and pefA and the outer membrane protein-encoding genes ompA and ompF. Screening for ESBL resistance was performed using the disk-diffusion test, the combinational-disk test with clavulanic acid, and multiplex PCR for blaTEM, blaSHV, blaCTX-M and blaOXA. The presence of the AmpC blaCMy-2 was tested among the ESBL-negative isolates by uniplex PCR. The resistant isolates were partially sequenced based on the stn gene.
The Salmonella isolation rate was 3.4% (6/175) from healthy and 11.1% (14/126) from diseased chickens. The 20 isolates belong to serotypes with public health significance like Typhimurium, Kentucky and Infantis. All the isolates possess invA, stn, svpC and ompF genes; 16 isolates harboured ompA, and one carried pefA. Of the 20 isolates, 19 were resistant to more than one antibiotic. Of these 19 isolates, 16 were ESBL-producing with the majority carrying blaTEM and blaSHV genes. The four ESBL-negative isolates carried blaCMY-2. Partial-stn-sequencing of the isolates revealed a high genetic relatedness to Salmonella strains from patients in Egypt and Asia.
Virulent ESBL-producing Salmonella was isolated from healthy and diseased chickens; the strains have a close relationship to human strains, posing a public health threat.
Sabry MA
,Abdel-Moein KA
,Abdel-Kader F
,Hamza E
... -
《-》
-
Prevalence of extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica from retail fishes in Egypt: A major threat to public health.
The increase in multidrug-resistant Salmonella enterica and its spread from food to humans are considered a serious public health concern worldwide. Little is currently known about the prevalence of extended-spectrum β-lactamase (ESBL)-producing S. enterica in fish in Africa. Therefore, this study aimed to investigate the existence of ESBL-producing S. enterica in retail fish in Egypt. In total, 200 fish samples were collected randomly from various retail fish markets in Egypt. S. enterica were detected in 19 (9.5%; 95% CI: 5.8-14.4) of the fish samples analyzed. Of the 19 non-repetitive S. enterica isolates, 18 were serologically categorized into eight S. enterica serovars and a non-typable serovar. All 19 S. enterica isolates (100%) showed multidrug-resistant phenotypes to at least three classes of antimicrobials, and 11 (57.9%) exhibited an ESBL-resistant phenotype and harbored at least one ESBL-encoding gene. The ESBL-producing S. enterica serovars were as follows: Kentucky (3 isolates; 15.8%), Enteritidis (2 isolates; 10.5%), Typhimurium (2 isolates; 10.5%), and 1 isolate (5.3%) each of Infantis, Virchow, Paratyphi B, and Senftenberg. The identified β-lactamase-encoding genes included ESBL-encoding genes blaCTX-M-3, blaCTX-M-14, blaCTX-M-15, blaSHV-1, blaSHV-2 and blaSHV-12; the AmpC β-lactamase-encoding gene blaCMY-2; and the narrow-spectrum β-lactamase-encoding genes blaTEM-1 and blaOXA-1. All S. enterica isolates were negative for carbapenemase-encoding genes. Molecular analysis of plasmid transferability and replicon typing revealed that most plasmids (with β-lactamase-encoding genes) were transferrable, and the most common incompatibility groups were IncI1, IncA/C, IncHI1, and IncN. To the best of our knowledge, this is the first report for molecular characterization of ESBL-producing S. enterica in fish in Egypt. The occurrence of ESBL-producing S. enterica in retail fish constitutes a potential public health threat with the possibility of transmission of these strains with resistance genes to humans. Such transmission would exacerbate the resistance to an important class of antibiotics commonly used in hospitals to treat typhoid and non-typhoidal Salmonella infections.
Gawish MF
,Ahmed AM
,Torky HA
,Shimamoto T
... -
《-》
-
Colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars isolated from Egyptian chicken carcasses.
The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of β-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health.
One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the β-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes.
Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were β-lactamase producers with the blaTEM as the most predominant β-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively).
The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.
El-Saeed BA
,Elshebrawy HA
,Zakaria AI
,Abdelkhalek A
,Sallam KI
... -
《Annals of Clinical Microbiology and Antimicrobials》
-
Prevalence of β-Lactamase Producing Escherichia coli from Retail Meat in Turkey.
Extended spectrum β-lactamase (ESBL) and plasmid-mediated AmpC β-lactamase (pAmpC) producing Escherichia coli have been shown to be present in humans and animals representing a significant problem worldwide. This study aimed to search the presence of ESBL and/or AmpC-producing E. coli in retail meats (chicken and beef) in Turkey. A total of 88 β-lactamase-producing E. coli were isolated from chicken (n = 81/100) and beef meat (n = 7/100) samples and their susceptibility to several antimicrobials were tested using disc diffusion method. E. coli isolates were further characterized for their phylogenetic groups. β-Lactamase encoding (blaTEM , blaSHV , blaOXA , blaCTX-M , and blaAmpC ) and quinolone resistance genes (qnrA, qnrB, qnrS, qepA, and acc(6')-Ib-cr) were also secreened by polymerase chain reaction (PCR). However, in regard to β-lactamase genes, 84 of 88 isolates were positive for blaCTX-M-1 (n = 39), blaCTX-M-3 (n = 5), blaCTX-M-15 (n = 4), blaTEM-1b (n = 2), blaSHV-12 (n = 1), blaCTX-M-1 /blaTEM-1b (n = 10), blaCTX-M-1 /blaTEM-1b /blaSHV-5 (n = 1), blaCTX-M-1 /blaCMY-2 (n = 1) and blaTEM-1b /blaCMY-2 (n = 6), blaCTX-M-15 /blaSHV-12 (n = 1), blaCTX-M-15 /blaTEM-1b (n = 1), blaTEM-1b /blaSHV-12 (n = 1), and blaCMY-2 (n = 12) genes. Resistance to cefuroxime (75.6% and 85.7%), nalidixic acid (89% and 85.7%), tetracycline (91.4% and 100%), streptomycin (40.2% and 100%), and trimethoprim-sulfamethoxazole (36.6% and 85.7%) was observed among strains isolated from chicken and beef, respectively. However, all isolates were found to be susceptible to amikacin, imipenem, and cefepime. Resistance to ampicillin and cefoxitin was significantly linked to blaCMY-2 gene, while there was a significant correlation between CTX-M type ESBL and antimicrobial resistance to cefuroxime and streptomycin (P < 0.05). The results of this study suggest that raw chicken retail meats are highly contaminated with ESBL-producing E. coli implementing a great risk to human health in Turkey.
Pehlivanlar Önen S
,Aslantaş Ö
,Şebnem Yılmaz E
,Kürekci C
... -
《-》