Urinary concentrations of polycyclic aromatic hydrocarbon and phthalate metabolite mixtures in relation to semen quality among men attending an infertility clinic.
Previous studies have reported that exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) is individually associated with altered semen quality, but no human studies have evaluated their joint effects of exposure mixtures, a more real-world scenario. We aimed to explore urinary metabolite mixtures of phthalates and PAHs in associations with semen quality. Repeated spot-urine samples gathered from 695 men attending a fertility clinic were analyzed for urinary metabolites of eight phthalates and ten monohydroxylated-PAHs (OH-PAHs). Principal component analysis (PCA)-multivariable linear regression (MLR) model, quantile g-computation (qg-comp), and Bayesian kernel machine regression (BKMR) were applied to estimate the associations of urinary mixtures of phthalate and OH-PAH metabolites with semen quality. The overall effects of urinary mixtures of phthalate and PAH metabolites on semen quality were not statistically significant. However, hydroxynaphthalene (OHNa) factor identified from PCA was monotonically associated with decreased total sperm count and sperm concentration, whereas di(2-ethylhexyl) phthalate (DEHP) factor was non-monotonically related to increased progressive sperm motility and total sperm motility. Qg-comp and BKMR models confirmed these findings and identified 2-OHNa and 2-OHFlu as the primary negative contributors, whereas MEOHP and MEHP as the primary positive contributors. Our findings suggest that exposure to mixtures of naphthalene and DEHP is associated with altered semen quality. The finding is warranted to confirm in further well-designed epidemiological studies.
Deng YL
,Yang P
,Wang YX
,Liu C
,Luo Q
,Shi T
,Zeng JY
,Lu TT
,Chen PP
,Miao Y
,Zhang M
,Cui FP
,Lu WQ
,Zeng Q
... -
《-》
Urinary and seminal plasma concentrations of phthalate metabolites in relation to spermatogenesis-related miRNA106a among men from an infertility clinic.
Studies indicate that phthalates can disrupt spermatogenesis and lead to the reduction of semen quality. However, the underlying mechanisms remain unclear. This study aimed to examine the associations of phthalate exposures as individual chemicals and mixtures with spermatogenesis-related miRNA106a. We detected eight phthalate metabolites in repeated urine samples and a single seminal plasma specimen among 111 men from an infertility clinic in Wuhan, China. Spermatogenesis-related miRNA106a was measured in seminal plasma. We used multivariable linear regression and Bayesian kernel machine regression (BKMR) models to separately evaluate the associations of phthalate metabolites as individual chemicals and mixtures with spermatogenesis-related miRNA106a. Elevated tertiles of urinary mono (2-ethylhexyl) phthalate (MEHP) was associated with decreased miRNA106a (-61.71%; 95%CI: 81.92, -18.93% for the highest vs. lowest tertile; P for trend = 0.01). Similarly, an inverse exposure-response relationship between seminal plasma MEHP concentrations and miRNA106a was also observed (-59.44%; 95%CI: 79.19, -20.95% for the highest vs. lowest tertile; P for trend = 0.01). The BKMR models showed that the mixtures of seminal plasma phthalate metabolites were associated with decreased miRNA106a when the chemical mixtures were ≥35th percentile compared to their medians. Nonlinear associations with miRNA106a were estimated for urinary and seminal plasma MEHP while fixing other phthalate metabolites at their medians. Our findings suggest that mixtures of phthalate metabolites in seminal plasma were negatively associated with spermatogenesis-related miRNA106a, and individual MEHP was the major contributor to the adverse effects.
Cui FP
,Liu C
,Deng YL
,Chen PP
,Miao Y
,Luo Q
,Zhang M
,Yang P
,Wang YX
,Lu WQ
,Zeng Q
... -
《-》
The relationships between urinary phthalate metabolites, reproductive hormones and semen parameters in men attending in vitro fertilization clinic.
Evidence from previous studies has shown that phthalates may play a role in male reproductive function; however, results are still inconclusive, and the mechanism remains unclear. In this study, we first assessed whether exposure to phthalates is associated with altered reproductive hormones and semen parameters in 599 men attending an in vitro fertilization clinic. Secondly, we evaluated whether reproductive hormones could play a mediating role in the association between phthalates and sperm parameters. Eight phthalate metabolites were measured in two different spot urine samples: mono‑n‑butyl phthalate, mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP), monobenzyl phthalate, and four oxidative metabolites of di‑(2‑ethylhexyl) phthalate (DEHP) [i.e., mono‑(2‑ethylhexyl) phthalate (MEHP), mono‑(2‑ethyl‑5‑hydroxyhexyl) phthalate (MEHHP), mono‑(2‑ethyl‑5‑oxohexyl) phthalate (MEOHP), and mono‑(2‑ethyl‑5‑carboxypentyl) phthalate (MECPP)]. Semen parameters (concentration, volume, motility, and morphology) and reproductive hormones, i.e., follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone, estradiol (E2), testosterone (TEST) and prolactin (PROL) were also determined and considered the main study outcomes. Separate multivariate linear regression was used to assess associations between levels of each urinary phthalate metabolite, molar sum of DEHP metabolites (∑DEHP), percentage of MEHP to ∑DEHP (%MEHP), and each outcome (natural log-transformed). Inverse associations were observed between TEST and MiBP (β = -0.099), FSH and MEHHP (β = -0.087), and PROL and MEOHP (β = -0.102), while a positive relationship was seen between E2 and MEP (β = 0.098). %MEHP was associated positively with FSH (β = 0.118) and LH (β = 0.099), but negatively with TEST/LH (β = -0.086) and TEST/E2 (β = -0.109). Sperm concentration was associated positively with MECPP (β = 0.131), MEHHP (β = 0.117), MEOHP (β = 0.107) and ∑DEHP (β = 0.111), but negatively with %MEHP (β = -0.135). All p-values were <0.05. Sobel's test indicated that FSH mediated significantly up to 60% of the positive relationship between sperm concentration and MEHHP, while FSH and LH mediated respectively 15 and 12% of the inverse association between sperm concentration and %MEHP. Further research on this topic is warranted.
Al-Saleh I
,Coskun S
,Al-Doush I
,Al-Rajudi T
,Abduljabbar M
,Al-Rouqi R
,Palawan H
,Al-Hassan S
... -
《-》
Mediation of association between polycyclic aromatic hydrocarbon exposure and semen quality by spermatogenesis-related microRNAs: A pilot study in an infertility clinic.
Spermatogenesis-related microRNAs (miRNAs) are vulnerable to polycyclic aromatic hydrocarbons (PAHs). Changes in spermatogenesis-related miRNAs may be biological intermedia in mechanisms linking PAHs and semen quality. This study aimed to investigate whether spermatogenesis-related microRNAs mediate the associations between PAHs and semen quality. We measured 10 monohydroxylated PAHs (OH-PAHs) in repeated urine samples and three candidate spermatogenesis-related miRNAs (miRNA106a, miRNA21, and miRNA34c) in seminal plasma from men attending an infertility clinic (n = 111). Mediation analysis was applied to determine the mediating role of spermatogenesis-related miRNAs in the association of PAH exposure with semen quality. Urinary 2-OHFlu and 2-OHPh were related to reduced seminal plasma miRNA34c (p for trend = 0.05 and 0.03, respectively). Urinary 9-OHPh was related to reduced seminal plasma miR106a (p for trend = 0.02), which in turn, was positively associated with sperm concentration, sperm count, sperm total motility, and progressive motility (all p for trends<0.05). Up to 43.8% of the eff ;ect of urinary 9-OHPh on decreased sperm concentration was mediated by seminal plasma miR106a. Our results suggested that certain PAH exposure was associated with reduced spermatogenesis-related miRNAs and such alterations might be an intermediate mechanism by which PAHs exert its adverse effects on semen quality.
Yang P
,Chen D
,Wang YX
,Zhang L
,Huang LL
,Lu WQ
,Zeng Q
... -
《-》