FM0807 decelerates experimental arthritis progression by inhibiting inflammatory responses and joint destruction via modulating NF-κB and MAPK pathways.
Rheumatoid arthritis (RA) is a chronic articular synovial inflammatory disease. The precise etiology underlying the pathogenesis of RA remains unknown. We aimed to investigate the inhibitory effect of curcumin analog FM0807 (curcumin salicylate monoester, 2-hydroxy-, 4-[(1E,6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxo-1,6-heptadien-1-yl]-2-methoxyphenyl ester) on experimental RA and investigate its possible mechanisms of action.
Rats with Freund's complete adjuvant (FCA)-induced arthritis (AIA) were administered aspirin (0.1 mmol.kg-1), curcumin (0.1 mmol.kg-1), FM0807 (0.1, 0.2 mmol.kg-1) and vehicle via gastric gavage, from days 7 to 21, once daily. The hind paw volume and arthritis index (AI) were measured, and radiographic and histological examinations were performed. Twenty-one days later, the animals were killed and left ankle joints were removed to measure protein expression of the elements of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway by Western blot analysis. The enzyme-linked immunosorbent assay (ELISA) was employed to measure synovial fluid levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10.
Compared with AIA group, FM0807 reduced the AI and swelling of the injected hind paw in a dose-dependent manner, and inhibited increases in inflammatory cell infiltration, pannus formation and cartilage destruction. FM0807 also potently attenuated the increase in the expression of inflammatory factors TNF-α, IL-6 and IL-1β in synovial fluid, while IL-10 levels were also elevated. FM0807 significantly suppressed phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2 (ERK1/2), c-Jun-N-terminal kinase (JNK) 1/2 (JNK1/2), p38MAPK, inhibitor of NF-κB kinase (IKK), IκB and NF-κB p65 protein, (all P<0.05), which displayed more potential effects compared with those of the aspirin and curcumin groups.
FM0807 exerts its therapeutic effects on RA by inhibiting cartilage degeneration. FM0807 treatment might be an effective therapeutic approach for RA.
Zhang N
,Liu Z
,Luo H
,Wu W
,Nie K
,Cai L
,Tan S
,Chen X
,Huang Y
,Liu J
,Lv M
,Zhang X
,Fan Y
,Lin Y
,Ye S
,Liu Y
,Wu L
,Xu J
... -
《-》
Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways.
The dried aboveground part of Geranium Wilfordii Maxim. (G. Wilfordii) is a traditional Chinese herbal medicine named lao-guan-cao. It has long been used for dispelling wind-dampness, unblocking meridians, and stopping diarrhea and dysentery. Previous investigations have revealed that 50% ethanolic extract of G. Wilfordii has anti-inflammatory and anti-proliferation activities on TNF-α induced murine fibrosarcoma L929 cells. Corilagin (COR) is a main compound in G. Wilfordii with the content up to 1.69 mg/g. Pharmacology study showed that COR has anti-inflammatory, anti-tumor, anti-microorganism, anti-oxidant, and hepatoprotective effects. However, there is no any investigation on its anti-proliferation and anti-inflammation effects in rheumatoid arthritis (RA).
The present study aimed to evaluate the potential pharmacological mechanisms of anti-proliferation and anti-inflammation effects of COR in RA.
In vitro, MH7A cells model induced by IL-1β was used. The anti-proliferation activity of COR was assessed by Cell Counting Kit-8 (CCK-8) assay, and the anti-migration and anti-invasion activity of COR was determined by wound healing assay and transwell assay, respectively. Furthermore, apoptosis assay by flow cytometer was used to measure the pro-apoptotic effect of COR. The mRNA expressions of Bax, Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS were measured by qRT-PCR, and related protein were further verified by ELISA kits or Western blot. Moreover, protein levels associated with NF-κB and MAPK signaling pathways of p65, P-p65, IκBα, P-IκBα, ERK1/2, P-ERK1/2, JNK, P-JNK1/2/3, p38, and P-p38 were determined by Western blot. The nuclear translocation of NF-κB-p65 was detected by immunofluorescent staining. In vivo, adjuvant-induced arthritis (AIA) rat model was used, and the body weight, paw swelling, and arthritis score during the entire period were measured. Histopathological analysis of joints of synovial tissues was also determined. The expression of pro-inflammatory cytokines in serum including IL-6, TNF-α, IL-1β, and IL-17 were measured.
The in vitro results showed that COR could dose-dependently inhibit the proliferation, migration, and invasion of IL-1β-induced MH7A cells, as well as promote its apoptosis. Moreover, it also suppressed the over-expression of Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS while up-regulated the level of Bax. Besides, the ratios of P-p65/p65, P-IκBα/IκBα, P-ERK/ERK, P-JNK/JNK, and P-p38/p38 were decreased, and the nuclear translocation of p65 induced by IL-1β was blocked by COR. In vivo results indicated that COR significantly reduced the paw swelling and arthritis score in AIA rats, and inhibited synovial tissue hyperplasia and erosion, as well as inflammatory cells infiltration. It also decreased the serum pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, and IL-17) production.
These results revealed that COR exerted anti-rheumatoid arthritis effect, and its underlying mechanisms may be related to inhibiting the proliferation, migration, and invasion of synovial fibroblasts, enhancing cell apoptosis, and suppressing inflammatory responses via downregulating NF-κB and MAPK signaling pathways.
Shen Y
,Teng L
,Qu Y
,Liu J
,Zhu X
,Chen S
,Yang L
,Huang Y
,Song Q
,Fu Q
... -
《-》
Kadsura heteroclita stem suppresses the onset and progression of adjuvant-induced arthritis in rats.
Rheumatoid arthritis (RA) is a chronic autoimmune diseased state, characterized by hyperplasia of the synovial membrane, degradation of cartilage, and bone erosion of diarthrodial joints. Kadsura heteroclita (Roxb) Craib (Schizandraceae), a traditional Tujia ethnomedicine called Xue Tong in China, has been long used for the prevention and treatment of rheumatic and arthritic diseases, especially in the southern China. This study aimed to evaluate anti-arthritic effects of the ethanol extract of Kadsura heteroclita stems (KHS) on complete Freund's adjuvant (CFA)-induced arthritis (AIA) in rats, as well as to explore the underlying mechanisms of anti-arthritis.
AIA was established in male Sprague-Dawley (SD) rats as described previously, and animals were daily treated by gavage with KHS ethanol extract (200, 400, or 800 mg/kg) or vehicle (0.3% CMCNa) throughout the 30-day experiment. The incidence and severity of arthritis were evaluated using clinical parameters. At the end of experiments, tissue swelling and bone destruction of the hind paws were assessed by computed tomography (CT) and histopathological analyses. Serum levels of tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-17A and IL-17F were measured by ELISA, and protein expression of matrix metalloproteinases-1 (MMP-1), MMP-3 and tissue inhibitor of MMP-1 (TIMP-1) were detected by Western blot.
Treatment with KHS dose-dependently inhibited paw swelling and reduced arthritis scores of AIA rats. CT images displayed that KHS remarkably protected AIA rats from tissue swelling and bone erosion of joints. Histopathological analyses revealed that KHS markedly reduced inflammatory cell infiltration, synovial proliferation, and the formation of pannus in the ankle joints of AIA rats. KHS was found to significantly suppress the production of TNF-α, IL-1 β, IL-6, IL-17A and IL-17F, inhibited the protein expression of MMP-1 and MMP-3, and elevated the protein expressions of TIMP-1.
KHS demonstrates potential anti-arthritic effects via inhibiting pivotal mediators of inflammation and cartilage destruction. This study strongly supports identification and isolation of active fractions of KHS which would be a potential candidate for further investigation as a new anti-arthritic botanical drug.
Yu H
,Zeng R
,Lin Y
,Li X
,Tasneem S
,Yang Z
,Qiu YX
,Li B
,Wang YH
,Cai X
,Wang W
... -
《-》