Parthenolide ameliorates neurological deficits and neuroinflammation in mice with traumatic brain injury by suppressing STAT3/NF-κB and inflammasome activation.

来自 PUBMED

作者:

Ding WCai CZhu XWang JJiang Q

展开

摘要:

Traumatic brain injury (TBI) triggers a set of complex inflammation that results in secondary injury. Parthenolide (PTN) is a sesquiterpene lactone extracted from the herb Tanacetum parthenium (Feverfew) and has potent anti-inflammatory, anti-apoptosis and anti-oxidative stress effects in the central nervous system (CNS)-related diseases. This study focuses on investigating the potential neuroprotective effect of PTN on TBI and the related mechanism. Bv2 microglia, primary microglia were stimulated by LPS, and HT22 neuron cells were stimulated by OGD/R, and they were treated with different doses of PTN. The expression profiles of pro-inflammatory cytokines, proteins, oxidative stress mediators, STAT3/NF-κB pathway, inflammasomes were detected. Forty male/female C57BL/6 mice were randomly divided into the sham, PTN, TBI, and TBI + PTN groups (10 mice per group). A mouse TBI model was set up with a controlled cortical impact (CCI) device. The modified nerve severity score (mNSS) was implemented to check short-term neurological impairment in mice, and the mice's memory and learning were assessed by the Morris water maze test. The water content in the mice's brains was measured by the dry-wet method. Hematoxylin-eosin (H&E) staining, Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay were applied for neuronal apoptosis. PTN dramatically alleviated LPS-induced inflammation in microglia, and OGD-mediated neuronal apoptosis and oxidative stress. In addition, PTN repressed LPS- or OGD-modulated STAT3/NF-κB and NLR family pyrin domain containing 1 (NLRP1), NLRP3, NLR family CARD domain containing 4 (NLRC4) inflammasomes activation. Administering the STAT3 inhibitor Stattic or NF-κB inhibitor Bay 11-7082 attenuated PTN-mediated effects. In vivo, PTN treatment relieved neural function deficits, brain edema and neuron apoptosis and improved the memory and learning function of TBI mice. Additionally, PTN impeded microglial activation and reduced the production of pro-inflammatory cytokines in brain lesions of TBI mice. Furthermore, PTN hindered STAT3/NF-κB and inflammasome activation. PTN can curb microglial activation and neuron apoptosis by dampening the STAT3/NF-κB pathway, thus exerting neuroprotective effects in TBI mice.

收起

展开

DOI:

10.1016/j.intimp.2022.108913

被引量:

19

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(442)

参考文献(0)

引证文献(19)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读