Identification and validation of a seven m6A-related lncRNAs signature predicting prognosis of ovarian cancer.

来自 PUBMED

作者:

Song YQu H

展开

摘要:

Long non-coding RNAs (lncRNAs) play an important role in angiogenesis, immune response, inflammatory response and tumor development and metastasis. m6 A (N6-methyladenosine) is one of the most common RNA modifications in eukaryotes. The aim of our research was to investigate the potential prognostic value of m6A-related lncRNAs in ovarian cancer (OC). The data we need for our research was downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Pearson correlation analysis between 21 m6A regulators and lncRNAs was performed to identify m6A-related lncRNAs. Univariate Cox regression analysis was implemented to screen for lncRNAs with prognostic value. A least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analyses was used to further reduct the lncRNAs with prognostic value and construct a m6A-related lncRNAs signature for predicting the prognosis of OC patients. Two hundred seventy-five m6A-related lncRNAs were obtained using pearson correlation analysis. 29 m6A-related lncRNAs with prognostic value was selected through univariate Cox regression analysis. Then, a seven m6A-related lncRNAs signature was identified by LASSO Cox regression. Each patient obtained a riskscore through multivariate Cox regression analyses and the patients were classified into high-and low-risk group using the median riskscore as a cutoff. Kaplan-Meier curve revealed that the patients in high-risk group have poor outcome. The receiver operating characteristic curve revealed that the predictive potential of the m6A-related lncRNAs signature for OC was powerful. The predictive potential of the m6A-related lncRNAs signature was successfully validated in the GSE9891, GSE26193 datasets and our clinical specimens. Multivariate analyses suggested that the m6A-related lncRNAs signature was an independent prognostic factor for OC patients. Moreover, a nomogram based on the expression level of the seven m6A-related lncRNAs was established to predict survival rate of patients with OC. Finally, a competing endogenous RNA (ceRNA) network associated with the seven m6A-related lncRNAs was constructed to understand the possible mechanisms of the m6A-related lncRNAs involed in the progression of OC. In conclusion, our research revealed that the m6A-related lncRNAs may affect the prognosis of OC patients and identified a seven m6A-related lncRNAs signature to predict the prognosis of OC patients.

收起

展开

DOI:

10.1186/s12885-022-09591-4

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1079)

参考文献(27)

引证文献(11)

来源期刊

BMC CANCER

影响因子:4.633

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读