Ferroptosis is involved in the benzene-induced hematotoxicity in mice via iron metabolism, oxidative stress and NRF2 signaling pathway.

来自 PUBMED

作者:

Sun RLiu MXu KPu YHuang JLiu JZhang JYin LPu Y

展开

摘要:

Benzene is a pollutant that widely exists in the environment and in occupational workplaces. Its exposure is closely associated with hematological disorders and even leukemia, which poses a significant threat to public health. Thus, the underlying mechanisms should be explored. In the current study, it was investigated whether ferroptosis plays a role in benzene hematopoietic toxicity and related mechanisms. Mice were subcutaneously injected with benzene at 150 mg/kg b.w. to establish a hematotoxicity model. Four weeks later, the mice exposed to benzene exhibited a decrease in white blood cells, red blood cells, and hemoglobin level, as well as reduction in frequency of hematopoietic stem and progenitor cells (HS/PCs) and the colony forming abilities of CFU-G, CFU-M, CFU-GM, and CFU-GEMM. Simultaneously, apart from ferroptosis features in the mitochondrial morphology, decreased ATP and mitochondrial membrane potential, alterations in biochemical indices and gene expression were also observed, such as increased intracellular iron and lipid peroxidation, glutathione (GSH) depletion, and reduced glutathione peroxidase (GSH-Px) level, and upregulated PTGS2. Meanwhile, markedly altered expression of SLC7A11, GPX4, GCLC, NOX1, TFRC, FTH1, and FTL hinted that redox imbalance and dysfunction of iron uptake and storage are vital to induce ferroptosis. Additionally, decreased cytoplasmic NRF2 and increased nuclear NRF2 were also found, suggesting the activation of the NRF2 pathway. More importantly, inhibition of ferroptosis with ferrostatin-1 (Fer-1) or deferoxamine (DFO) partially relieved the hematopoietic injuries. Our findings imply that dysregulation in the system Xc-/GPX4 axis, iron metabolism, and activation of the NRF2 pathway play a crucial role in benzene-induced ferroptosis, and reveals that taking ferroptosis as a target may be a potential intervention strategy for benzene-induced hematotoxicity.

收起

展开

DOI:

10.1016/j.cbi.2022.110004

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(386)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读