Man vs. machine: A comparison of human and computer assessment of nonverbal behavior in social anxiety disorder.

来自 PUBMED

作者:

Shechter TAsher MAderka IM

展开

摘要:

Social anxiety disorder (SAD) is a common psychological disorder associated with broad interpersonal impairment. Most previous studies have examined nonverbal behavior in SAD using human coders. However, one recent study utilized a machine-based analysis of nonverbal behavior and dyadic synchrony in SAD (Asher, Kauffmann, & Aderka, 2020). In the present study, we compared human and computer assessments of nonverbal behavior in social anxiety to enhance our knowledge about their commonalities and unique differences in capturing nonverbal behavior in the context of SAD. Specifically, the present study included 152 individuals: 38 individuals diagnosed with SAD and 114 individuals without SAD. Participants formed 76 opposite-sex interaction dyads comprising either two individuals without SAD (n = 39 control dyads) or one individual with SAD and one individual without SAD (n = 37 SAD dyads). All participants underwent a getting-acquainted task and were videotaped during the conversation. Half of the interactions were small talk interactions and half were closeness-generating interactions that required significant self-disclosure. We found that both types of coding were associated with self-reported social anxiety but that machine-based coding was superior in capturing social anxiety in closeness-generating contexts. Implications for research on nonverbal behavior in SAD are discussed.

收起

展开

DOI:

10.1016/j.janxdis.2022.102587

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(124)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读