Positioning for acute respiratory distress in hospitalised infants and children.

来自 PUBMED

作者:

Bhandari APNnate DAVasanthan LKonstantinidis MThompson J

展开

摘要:

Acute respiratory distress syndrome (ARDS) is a significant cause of hospitalisation and death in young children. Positioning and mechanical ventilation have been regularly used to reduce respiratory distress and improve oxygenation in hospitalised patients. Due to the association of prone positioning (lying on the abdomen) with sudden infant death syndrome (SIDS) within the first six months, it is recommended that young infants be placed on their back (supine). However, prone positioning may be a non-invasive way of increasing oxygenation in individuals with acute respiratory distress, and offers a more significant survival advantage in those who are mechanically ventilated. There are substantial differences in respiratory mechanics between adults and infants. While the respiratory tract undergoes significant development within the first two years of life, differences in airway physiology between adults and children become less prominent by six to eight years old. However, there is a reduced risk of SIDS during artificial ventilation in hospitalised infants. Thus, an updated review focusing on positioning for infants and young children with ARDS is warranted. This is an update of a review published in 2005, 2009, and 2012. To compare the effects of different body positions in hospitalised infants and children with acute respiratory distress syndrome aged between four weeks and 16 years. We searched CENTRAL, which contains the Acute Respiratory Infections Group's Specialised Register, MEDLINE, Embase, and CINAHL from January 2004 to July 2021. Randomised controlled trials (RCTs) or quasi-RCTs comparing two or more positions for the management of infants and children hospitalised with ARDS. Two review authors independently extracted data from each study. We resolved differences by consensus, or referred to a third contributor to arbitrate. We analysed bivariate outcomes using an odds ratio (OR) and 95% confidence interval (CI). We analysed continuous outcomes using a mean difference (MD) and 95% CI. We used a fixed-effect model, unless heterogeneity was significant (I2 statistic > 50%), when we used a random-effects model. We included six trials: four cross-over trials, and two parallel randomised trials, with 198 participants aged between 4 weeks and 16 years, all but 15 of whom were mechanically ventilated. Four trials compared prone to supine positions. One trial compared the prone position to good-lung dependent (where the person lies on the side of the healthy lung, e.g. if the right lung was healthy, they were made to lie on the right side), and independent (or non-good-lung independent, where the person lies on the opposite side to the healthy lung, e.g. if the right lung was healthy, they were made to lie on the left side) position. One trial compared good-lung independent to good-lung dependent positions. When the prone (with ventilators) and supine positions were compared, there was no information on episodes of apnoea or mortality due to respiratory events. There was no conclusive result in oxygen saturation (SaO2; MD 0.40 mmHg, 95% CI -1.22 to 2.66; 1 trial, 30 participants; very low certainty evidence); blood gases, PCO2 (MD 3.0 mmHg, 95% CI -1.93 to 7.93; 1 trial, 99 participants; low certainty evidence), or PO2 (MD 2 mmHg, 95% CI -5.29 to 9.29; 1 trial, 99 participants; low certainty evidence); or lung function (PaO2/FiO2 ratio; MD 28.16 mmHg, 95% CI -9.92 to 66.24; 2 trials, 121 participants; very low certainty evidence). However, there was an improvement in oxygenation index (FiO2% X MPAW/ PaO2) with prone positioning in both the parallel trials (MD -2.42, 95% CI -3.60 to -1.25; 2 trials, 121 participants; very low certainty evidence), and the cross-over study (MD -8.13, 95% CI -15.01 to -1.25; 1 study, 20 participants). Derived indices of respiratory mechanics, such as tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) were reported. There was an apparent decrease in tidal volume between prone and supine groups in a parallel study (MD -0.60, 95% CI -1.05 to -0.15; 1 study, 84 participants; very low certainty evidence). When prone and supine positions were compared in a cross-over study, there were no conclusive results in respiratory compliance (MD 0.07, 95% CI -0.10 to 0.24; 1 study, 10 participants); changes in PEEP (MD -0.70 cm H2O, 95% CI -2.72 to 1.32; 1 study, 10 participants); or resistance (MD -0.00, 95% CI -0.05 to 0.04; 1 study, 10 participants). One study reported adverse events. There were no conclusive results for potential harm between groups in extubation (OR 0.57, 95% CI 0.13 to 2.54; 1 trial, 102 participants; very low certainty evidence); obstructions of the endotracheal tube (OR 5.20, 95% CI 0.24 to 111.09; 1 trial, 102 participants; very low certainty evidence); pressure ulcers (OR 1.00, 95% CI 0.41 to 2.44; 1 trial, 102 participants; very low certainty evidence); and hypercapnia (high levels of arterial carbon dioxide; OR 3.06, 95% CI 0.12 to 76.88; 1 trial, 102 participants; very low certainty evidence). One study (50 participants) compared supine positions to good-lung dependent and independent positions. There was no conclusive evidence that PaO2 was different between supine and good-lung dependent positioning (MD 3.44 mm Hg, 95% CI -23.12 to 30.00; 1 trial, 25 participants; very low certainty evidence). There was also no conclusive evidence for supine position and good-lung independent positioning (MD -2.78 mmHg, 95% CI -28.84, 23.28; 25 participants; very low certainty evidence); or between good-lung dependent and independent positioning (MD 6.22, 95% CI -21.25 to 33.69; 1 trial, 25 participants; very low certainty evidence). As most trials did not describe how possible biases were addressed, the potential for bias in these findings is unclear. Although included studies suggest that prone positioning may offer some advantage, there was little evidence to make definitive recommendations. There appears to be low certainty evidence that positioning improves oxygenation in mechanically ventilated children with ARDS. Due to the increased risk of SIDS with prone positioning and lung injury with artificial ventilation, it is recommended that hospitalised infants and children should only be placed in this position while under continuous cardiorespiratory monitoring.

收起

展开

DOI:

10.1002/14651858.CD003645.pub4

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(743)

参考文献(68)

引证文献(4)

来源期刊

Cochrane Database of Systematic Reviews

影响因子:11.996

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读