-
Evaluation of antiobesity and hepatorenal protective activities of Salvia officinalis extracts pre-treatment in high-fat diet-induced obese rats.
The present study evaluated the effects of Hail Salvia officinalis total extract (SOTE) and its high flavonoid fraction (SOHFF) on the high-fat diet (HFD)-induced obesity and hepatorenal damage in rats. Salvia officinalis plants were collected from Hail region, Saudi Arabia. Rats were fed HFD and supplemented orally with SOTE (250 mg kg-1) or SOHFF (100 mg kg-1) or simvastatin (SVS; 10 mg kg-1) every day for 8 weeks. Compared to the controls, HFD-induced obesity led to significant increases in body weight, body weight gained, blood insulin, leptin, cardiac enzymes (LDH and CPK) activity, and atherogenic index (AI). HFD rats also showed higher levels of hepatic and renal function biomarkers (ALT, urea, and creatinine), as well as lower levels of PPARγ and Nrf2-gene expression and a disrupted lipid profile. Moreover, HFD rats had lower levels of hepatic and renal antioxidant biomarkers (CAT, GPx, SOD, GR, and GSH), accompanied by higher levels of hepatic and renal lipid peroxidation (LPO), nitric oxide (NO), and inflammatory mediators (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)). In addition, histological examination of hepatic and renal tissues revealed histopathological changes that validated the biochemical findings. Compared to HFD group, SOTE and SOHFF treatment led to marked amelioration of all the aforementioned parameters. Collectively, supplementation with SOTE and SOHFF effectively reversed HFD-induced alterations through its antioxidant, hypolipidemic, and anti-inflammatory properties. Hence, SOTE and SOHFF have therapeutic potential in controlling obesity and related pathologies.
Othman MS
,Khaled AM
,Aleid GM
,Fareid MA
,Hameed RA
,Abdelfattah MS
,Aldin DE
,Moneim AEA
... -
《-》
-
Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities.
Plant derived phytochemical therapy is a bright candidate for treatment of diabetes and its associated complications. Ocimum baslicum is used as an anti-diabetic traditional medicine. Hence, the present study investigated the effect of Hail Ocimum extract (HOE) and its total flavonoids (HOETF) against hepatorenal damage in experimental diabetes induced by high-fat diet (HFD) and injection of streptozotocin (STZ) in rats. Diabetic animals were co-treated daily with HOE, HOETF or metformin (MET) as a standard anti-diabetic drug for four weeks. Compared to controls, HFD/STZ-treatment lead to significant increases in fasting blood glucose, insulin and HOMA-IR levels. Furthermore, diabetic rats had elevated hepatic (ALT and ALP) and kidney functions (urea and creatinine) biomarkers together with disturbed lipid profile and decreased PPAR-γ gene expression. Higher levels of hepatic and renal LPO and NO paralleled with lower levels of GSH and activities of antioxidant enzymes (SOD, CAT, GPx and GR) after HFD/STZ treatment. Additionally, noteworthy inflammatory and apoptotic responses were evident in both organs of diabetic rats as witnessed by augmented levels of TNF-α, IL-1b and Bax levels with declined levels of Bcl-2. Moreover, histological examination of hepatic, renal and pancreatic tissues validated the biochemical findings. On contrary, co-treatment of diabetic animals with HOE or HOETF could decrease glucose and insulin levels together with improvement of lipid markers and alleviation of hepatorenal dysfunction, oxidative injury, inflammatory and apoptotic events. Conclusively, HOE or HOETF could be a promising complementary therapeutic option for the management of diabetic hepatorenal complication owing to their antioxidant, anti-inflammatory; anti-apoptotic properties.
Othman MS
,Khaled AM
,Al-Bagawi AH
,Fareid MA
,Ghany RA
,Habotta OA
,Abdel Moneim AE
... -
《-》
-
Salvia officinalis Improves Glycemia and Suppresses Pro-inflammatory Features in Obese Rats with Metabolic Syndrome.
Obesity is regarded as the main cause of metabolic diseases and a core factor for all-cause mortality in the general population, notably from cardiovascular disease. The majority of people with type 2 diabetes have obesity and insulin resistance. Some evidence indicates that an individual with obesity is approximately 10 times more likely to develop type 2 diabetes than someone with moderate body weight. One of the most significant therapeutic herbs, Salvia officinalis (Lamiaceae) (SAGE), possesses potent medicinal importance. The aim of this article was to evaluate the anti-diabetic and antiobesity activity of SAGEAE against HFD-induced obesity in rats.
Thirty adult albino rats were randomly divided into five equal groups: control, High-fat Diet (HFD) administrated rats, HFD + Salvia officinalis Aqueous Extract (SAGEAE) (150 mg/kg.bw.), HFD + SAGEAE (300 mg/kg.bw.) and HFD + metformin (500 mg/kg.bw.). Body weight, plasma biochemical parameters, oxidative stress, inflammatory indicators, hepatic Phosphoenolpyruvate Carboxykinase 1 (PCK1), Glucokinase (GK), brain Leptin Receptor (LepRb), Glucose Transporter-4 (GLUT4), Sirtuin 1 (SIRT1) and mRNA33-5P gene signalling mRNA levels were all assessed after 8 weeks. A histological examination of the liver was also performed to check for lipid accumulation.
The administration of HFD resulted in increased body weight, glucose, insulin, leptin, Total Cholesterol (TC), Triglycerides (TG), Thiobarbaturic Acid Reactive Substances (TBARS), Monocyte Chemoattractant Protein-1 (MCP1), Interleukine-6 (IL-6) and tumor necrosis factor-α (TNF- α) as well as hepatic PCK1, brain LepRb and adipose tissue mRNA33-5P gene expression. However, our findings revealed a significant reduction in adiponectin, High-density Lipoproteincholesterol (HDL-C), reduced glutathione (GSH) and Superoxide Dismutase (SOD) levels as well as the expression of hepatic GK and adipose tissue SIRT1 and GLUT4 genes. Also, administration of SAGEAE significantly normalized body weight, glucose, insulin, leptin, adiponectin, TC, TG, HDL-C, TBARs, SOD, IL-6, MCP-1 and TNF-α in plasma and liver tissue of HFD-treated rats. On the other hand, PCK1, GK, LepRb, SIRT1, GLUT4 and mRNA33-5P gene expression was enhanced in obese rats when administrated with SAGEAE. Histological and US studies support the biochemical, PCR and electrophoretic results.
The findings imply that SAGEAE could be used as a new pharmaceutical formula in the treatment of obesity.
Alsherif DA
,Hussein MA
,Abuelkasem SS
《-》
-
Lycopene corrects metabolic syndrome and liver injury induced by high fat diet in obese rats through antioxidant, anti-inflammatory, antifibrotic pathways.
Obesity is a global epidemic disease that is closely associated with various health problems as Diabetes mellitus, cardiovascular, and metabolic disorders. Lycopene (LYC), a red-colored carotenoid, has demonstrated various promising therapeutic effects. Hence, the potential of LYC was studied against high fat diet (HFD)-induced obesity and metabolic disturbances in rats. Animals fed on HFD and orally supplemented with LYC (25 and 50 mg/kg) or simvastatin (10 mg/kg) every day for 3 months. The results revealed that long-term consumption of HFD significantly increased weight gain, liver weight, cholesterol, triglycerides (TG), apolipoprotein-B (Apo-B), low-density lipoprotein-cholesterol (LDL-c) levels, as well as decreasing the high-density lipoprotein-cholesterol (HDL-c) levels. Moreover, high blood glucose and insulin levels accompanied by low peroxisome proliferator activated receptor gamma (PPAR-γ) were recorded in HFD group. Further, HFD rats displayed lower levels of antioxidant biomarkers (SOD, CAT, GPx, GR and GSH), in addition to higher levels of MDA, NO and inflammatory mediators (IL-1β, TNF-α, and MPO). Marked increases were observed in atherogenic index, lactate dehydrogenase and creatine kinase together with fibrosis markers (TGF-β1 and α-SMA) in rats fed on HFD. Comparing to model group, LYC was able to effectively reverse HFD-mediated alterations at dose dependent manner. Altogether, dietary supplementation of LYC successfully reversed HFD-induced alterations through its antioxidant, anti-inflammatory, and anti-fibrotic properties. Hence, LYC displayed a therapeutic potential to manage obesity and its associated pathologies.
Albrahim T
,Alonazi MA
《-》
-
Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts.
Obesity-induced insulin resistance and chronic inflammation appears to be the most frequent cause of diabetes and its related metabolic complications; in this way a new therapeutic approaches are needed to prevent the chronic obesity and insulin resistance. Lepidium sativum has been extensively used in traditional alternative medicine for cough, skin disease, liver disorder, diuretic, gastrointestinal problems, hair loss treatment, milk secretion during lactation as well as antioxidant, antihypertensive, anti-inflammatory, and antidiabetic activities. The hypoglycemic and hypolipidemic effect of Lepidium sativum have been observed by previous studies, but the underlying molecular mechanisms are unclear.
In this study, we investigated the beneficial effect of Lepidium sativum ethanol and aqueous seed extracts on obesity, oxidative, inflammatory, and insulin sensitivity changes in the liver tissue of high fat diet (HFD)-fed rats. The bioactive constituents responsible for these activities have been identified for both extracts using HPLC and GC-MS.
Rats were fed HFD for 10 weeks. The obese rats were treated orally with the Lepidium sativum ethanol extracts (LSEE) at dose 200 and 400 mg/kg body weight (BW) and Lepidium sativum aqueous extracts (LSAE) at dose 200 mg/kg BW daily for 8 weeks.
The findings of the present study pointed out a significant increase in the hepatic transaminases, lipid profile, leptin, and hepatic oxidative stress with decreased antioxidant capacity of HFD-fed rats. Consistent with this depiction; we determined the up-regulation of liver inflammatory markers with a significant down-regulation of insulin signaling components phospho-insulin receptor (p-IR), p-AKT, p-mammalian target of rapamycin (p-mTOR), and p-p70S6K after consumption of HFD for 10 weeks that indicates a deterioration of insulin sensitivity. Interestingly, the phytochemical screening of LSEE and LSAE exhibited positive results for phenolic, flavonoid, lipid, and some bioactive components as well as the in vitro antioxidant activity of both extracts clearly demonstrated their high antioxidant activities. Notably, LSEE and LSAE displayed a wide range of biological features including anti-obesity, anti-inflammatory, and antioxidant properties. Both extracts significantly decreased high glucose, leptin, lipid profile, liver enzymes levels, and body weight. We also found that LSEE and LSAE significantly alleviated lipid peroxidation and restored the antioxidant enzymes to normal levels. In parallel, the intracellular phosphorylation of classical markers of insulin signaling cascade p-IR/p-AKT/p-mTOR/p-p70S6K was up-regulated in the hepatic tissues of LSEE and LSAE-treated groups.
This study provides evidence that LSEE and LSAE might be one promising dietary supplementation that could safely and effectively prevent the early metabolic alterations and weight gain caused by HFD further regulate the activation of insulin signaling pathway beside their powerful antioxidant and low-toxicity properties.
Abdulmalek SA
,Fessal M
,El-Sayed M
《-》