-
Treatment planning system commissioning of the first clinical biology-guided radiotherapy machine.
The RefleXion X1 is a novel radiotherapy machine designed for image-guided radiotherapy (IGRT) and biology-guided radiotherapy (BgRT). Its treatment planning system (TPS) generates IMRT and SBRT plans for a 6MV-FFF beam delivered axially via 50 firing positions with the couch advancing every 2.1 mm. The purpose of this work is to report the TPS commissioning results for the first clinical installation of RefleXion™ X1.
CT images of multiple phantoms were imported into the RefleXion TPS to evaluate the accuracy of data transfer, anatomical modeling, plan evaluation, and dose calculation. Comparisons were made between the X1, Eclipse™, and MIM™. Dosimetric parameters for open static fields were evaluated in water and heterogeneous slab phantoms. Representative clinical IMRT and SBRT cases were planned and verified with ion chamber, film, and ArcCHECK@ measurements. The agreement between TPS and measurements for various clinical plans was evaluated using Gamma analysis with a criterion of 3%/2 mm for ArcCHECK@ and film. End-to-end (E2E) testing was performed using anthropomorphic head and lung phantoms.
The average difference between the TPS-reported and known HU values was -1.4 ± 6.0 HU. For static fields, the agreements between the TPS-calculated and measured PDD10 , crossline profiles, and inline profiles (FWHM) were within 1.5%, 1.3%, and 0.5 mm, respectively. Measured output factors agreed with the TPS within 1.3%. Measured and calculated dose for static fields in heterogeneous phantoms agreed within 2.5%. The ArcCHECK@ mean absolute Gamma passing rate was 96.4% ± 3.4% for TG 119 and TG 244 plans and 97.8% ± 3.6% for the 21 clinical plans. E2E film analysis showed 0.8 mm total targeting error for isocentric and 1.1 mm for off-axis treatments.
The TPS commissioning results of the RefleXion X1 TPS were within the tolerances specified by AAPM TG 53, MPPG 5.a, TG 119, and TG 148. A subset of the commissioning tests has been identified as baseline data for an ongoing QA program.
Simiele E
,Capaldi D
,Breitkreutz D
,Han B
,Yeung T
,White J
,Zaks D
,Owens M
,Maganti S
,Xing L
,Surucu M
,Kovalchuk N
... -
《Journal of Applied Clinical Medical Physics》
-
Validation and IMRT/VMAT delivery quality of a preconfigured fast-rotating O-ring linac system.
A fast-rotating O-ring dedicated intensity modulated radiotherapy (IMRT)/volumetric modulated arc therapy (VMAT) delivery system, the Halcyon, is delivered by default with a fully preconfigured photon beam model in the treatment planning system (TPS). This work reports on the validation and achieved IMRT/VMAT delivery quality on the system.
Acceptance testing followed the vendor's installation product acceptance and was supplemented with mechanical QA. The dosimetric calibration was performed according to the IAEA TRS-398 code-of-practice, delivering 600 cGy/min at 10 cm depth, a 90 cm source-surface distance, and a 10 × 10 cm² field size. The output factors, multileaf collimator (MLC) transmission and dosimetric leaf gap (DLG) were validated by comparing measurements with the modeled values in the TPS. Validation of IMRT/VMAT was conducted following AAPM reports (MPPG 5.a, TG-119). Next, dose measurements were performed for end-to-end (E2E) checks in heterogeneous anthropomorphic phantoms using radiochromic film in multiple planes and using ionization chambers (IC) point measurements. E2E checks were performed for VMAT (cranial, rectum, spine, and head and neck) and IMRT (lung). Additionally, IROC Houston mailed dosimetry audits were performed for the beam calibration and E2E measurements using a thorax phantom (IMRT) and a head and neck phantom (VMAT). Lastly, extensive patient-specific QA was performed for the first patients of each new indication, 26 in total (nrectum = 2, nspine = 5, nlung = 5, nesophagus = 2, nhead and neck = 7, ncranial = 5), treated on the fast-rotating O-ring linac. The patient-specific QA followed the AAPM TG-218 guidelines and comprised of portal dosimetry, ArcCHECK diode array, radiochromic film dosimetry in a MultiCube phantom, and IC point measurements.
The measured output factors showed an agreement <1% for fields ≥3 × 3 cm². Field sizes ≤2 × 2 cm² had a difference of <2%. The measured single-layer MLC transmission was 0.42 ± 0.01% and the measured DLG was 0.27 ± 0.22 mm. The AAPM MPPG 5.a measurements were fully compliant with the guideline criteria. Dose differences larger than 2% were found for the PDD at large depths (>25 cm). TG-119's confidence limits were achieved for the VMAT point dose measurements and for both the IMRT and VMAT radiochromic film measurements. The TG-119 confidence limits were not achieved for IMRT point dose measurements in both the target (5.9%) and the avoidance structure (6.4%). All E2E tests had point differences below 2.3% and gamma agreement scores above 90.6%. The IROC beam calibration audit showed agreement of <1%. The IROC lung IMRT audit and head and neck VMAT audit had results compliant with the IROC Houston's credentialing criteria. All IMRT and VMAT plans selected for patient-specific QA were within the action limits suggested by TG-218.
The fast-rotating O-ring linac and its preconfigured TPS are compliant with the international commissioning criteria of AAPM MPPG 5.a and AAPM TG-119. E2E measurements on heterogeneous anthropomorphic phantoms were within clinically acceptable tolerances. IROC Houston's audits satisfied the credentialing criteria. This work comprises the first extensive dataset reporting on the preconfigured fast-rotating O-ring linac.
De Roover R
,Crijns W
,Poels K
,Michiels S
,Nulens A
,Vanstraelen B
,Petillion S
,De Brabandere M
,Haustermans K
,Depuydt T
... -
《-》
-
Dosimetric evaluation of a treatment planning system using the AAPM Medical Physics Practice Guideline 5.a (MPPG 5.a) validation tests.
Verifying the accuracy of the dose calculation algorithm is considered one of the most critical steps in radiotherapy treatment for delivering an accurate dose to the patient. This work aimed to evaluate the dosimetric performance of the treatment planning system (TPS) algorithms; the AAA (v. 15.6), AXB (v. 15.6) and eMC (v. 15.6) following the AAPM medical physics practice guideline 5.a (MPPG 5.a) validation tests package in a Varian iX Linear Accelerator (Linac). A series of tests were developed based on the MPPG 5.a. on a Varian's Eclipse TPS (v. 15.6) (Varian Medical Systems). First, the basic photon and electron tests were validated by comparing the TPS calculated dose with the measurements. Next, for heterogeneity tests, we verified the Computed Tomography number to electron density (CT-to-ED) curve by comparing it with the baseline values, and TPS calculated point doses beyond heterogeneous media were compared to the measurements. Finally, for IMRT/VMAT dose validation tests, clinical reference plans were re-calculated on ArcCheck's virtual phantom (Sun Nuclear Corporation, Melbourne, FL, USA) and exported to the Linac for delivery using the ArcCheck dosimetry system. All validation tests were evaluated following the MPPG 5.a recommended tolerances. In basic dose validation tests, the TPS calculated depth dose profiles agreed well with the measurements, with a minimum gamma passing rate of 95% at 2%/2 mm criteria. However, disagreements are seen in the build-up and penumbra region. Results for most point doses in homogeneous water phantoms were within the MPPG 5.a tolerance. For the heterogeneity tests, the CT-to-ED curve was established, and calculated point doses were all within 3% of the measurements for heterogeneous media for both photon algorithms at three energies. These results are within the MPPG5.a the recommended tolerance of 3%. Moreover, for electron beams, the differences between the calculated and measured point doses averaged 5% and 7%, but were just within the MPPG 5.a tolerance of 7%. For IMRT and VMAT validation tests using a gamma criteria of a 2%/2 mm, IMRT plans showed maximum and minimum passing rates of 98.2% and 97.4%, respectively. Whereas VMAT plans showed maximum and minimum passing rates of 100% and 94.3%, respectively. We conclude that the dosimetric accuracy of the Eclipse TPS (v15.6) algorithm is adequate for clinical use. The MPPG 5.a tests are valuable for evaluating dose calculation accuracy and are very useful for TPS upgrade checks, commissioning tests, and routine TPS QA.
Yousif YAM
,Zifodya J
《-》
-
Demonstration of real-time positron emission tomography biology-guided radiotherapy delivery to targets.
Biology-guided radiotherapy (BgRT) is a novel technology that uses positron emission tomography (PET) data to direct radiotherapy delivery in real-time. BgRT enables the precise delivery of radiation doses based on the PET signals emanating from PET-avid tumors on the fly. In this way, BgRT uniquely utilizes radiotracer uptake as a biological beacon for controlling and adjusting dose delivery in real-time to account for target motion.
To demonstrate using real-time PET for BgRT delivery on the RefleXion X1 radiotherapy machine. The X1 radiotherapy machine is a rotating ring-gantry radiotherapy system that generates a nominal 6MV photon beam, PET, and computed tomography (CT) components. The system utilizes emitted photons from PET-avid targets to deliver effective radiation beamlets or pulses to the tumor in real-time.
This study demonstrated a real-time PET BgRT delivery experiment under three scenarios. These scenarios included BgRT delivering to (S1) a static target in a homogeneous and heterogeneous environment, (S2) a static target with a hot avoidance structure and partial PET-avid target, and (S3) a moving target. The first step was to create stereotactic body radiotherapy (SBRT) and BgRT plans (offline PET data supported) using RefleXion's custom-built treatment planning system (TPS). Additionally, to create a BgRT plan using PET-guided delivery, the targets were filled with 18F-Fluorodeoxyglucose (FDG), which represents a tumor/target, that is, PET-avid. The background materials were created in the insert with homogeneous water medium (for S1) and heterogeneous water with styrofoam mesh medium. A heterogeneous background medium simulated soft tissue surrounding the tumor. The treatment plan was then delivered to the experimental setups using a pre-commercial version of the X1 machine. As a final step, the dosimetric accuracy for S1 and S2 was assessed using the ArcCheck analysis tool-the gamma criteria of 3%/3 mm. For S3, the delivery dose was quantified using EBT-XD radiochromic film. The accuracy criteria were based on coverage, where 100% of the clinical target volume (CTV) receives at least 97% of the prescription dose, and the maximum dose in the CTV was ≤130% of the maximum planned dose (97 % ≤ CTV ≤ 130%).
For the S1, both SBRT and BgRT deliveries had gamma pass rates greater than 95% (SBRT range: 96.9%-100%, BgRT range: 95.2%-98.9%), while in S2, the gamma pass rate was 98% for SBRT and between 95.2% and 98.9% for BgRT plan delivering. For S3, both SBRT and BgRT motion deliveries met CTV dose coverage requirements, with BgRT plans delivering a very high dose to the target. The CTV dose ranges were (a) SBRT:100.4%-120.4%, and (b) BgRT: 121.3%-139.9%.
This phantom-based study demonstrated that PET signals from PET-avid tumors can be utilized to direct real-time dose delivery to the tumor accurately, which is comparable to the dosimetric accuracy of SBRT. Furthermore, BgRT delivered a PET-signal controlled dose to the moving target, equivalent to the dose distribution to the static target. A future study will compare the performance of BgRT with conventional image-guided radiotherapy.
Oderinde OM
,Narayanan M
,Olcott P
,Voronenko Y
,Burns J
,Xu S
,Shao L
,Feghali KAA
,Shirvani SM
,Surucu M
,Kuduvalli G
... -
《-》
-
Characterization and commissioning of a new collaborative multi-modality radiotherapy platform.
TaiChi, a new multi-modality radiotherapy platform that integrates a linear accelerator, a focusing gamma system, and a kV imaging system within an enclosed O-ring gantry, was introduced into clinical application. This work aims to assess the technological characteristics and commissioning results of the TaiChi platform. The acceptance testing and commissioning were performed following the manufacturer's customer acceptance tests (CAT) and several AAPM Task Group (TG) reports/guidelines. Regarding the linear accelerator (linac), all applicable validation measurements recommended by the MPPG 5.a (basic photon beam model validation, intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) validation, end-to-end(E2E) tests, and patient-specific quality assurance (QA)) were performed. For the focusing gamma system, the absorbed doses were measured using a PTW31014 ion chamber (IC) and PTW60016 diode detector. EBT3 films and a PTW60016 diode detector were employed to measure the relative output factors (ROFs). The E2E tests were performed using PTW31014 IC and EBT3 films. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were investigated using EBT3 films. The image quality was evaluated regarding the contrast-to-noise ratio (CNR), spatial resolution, and uniformity. All tests included in the CAT met the manufacturer's specifications. All MPPG 5.a measurements complied with the tolerances. The confidence limits for IMRT/VMAT point dose and dose distribution measurements were achieved according to TG-119. The point dose differences were below 1.68% and gamma passing rates (3%/2 mm) were above 95.1% for the linac E2E tests. All plans of patient-specific QA had point dose differences below 1.79% and gamma passing rates above 96.1% using the 3%/2 mm criterion suggested by TG-218. For the focusing gamma system, the differences between the calculated and measured absorbed doses were below 1.86%. The ROFs calculated by the TPS were independently confirmed within 2% using EBT3 films and a PTW60016 detector. The point dose differences were below 2.57% and gamma passing rates were above 95.3% using the 2%/1 mm criterion for the E2E tests. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were within 0.5 mm. The image quality parameters fully complied with the manufacturer's specifications regarding the CNR, spatial resolution, and uniformity. The multi-modality radiotherapy platform complies with the CAT and AAPM commissioning criteria. The commissioning results demonstrate that this platform performs well in mechanical and dosimetry accuracy.
Wang Z
,Sun X
,Wang W
,Zhang T
,Chen L
,Duan J
,Feng S
,Chen Y
,Wei Z
,Zang J
,Xiao F
,Zhao L
... -
《-》