TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling.

来自 PUBMED

作者:

Liu WZhao YWang GFeng SGe XYe WWang ZZhu YCai WBai JZhou X

展开

摘要:

Osteosarcoma (OS) is a malignant bone tumor that mainly occurs in adolescents. It is accompanied by a high rate of lung metastasis, and high mortality. Recent studies have suggested the important roles of tripartite motif-containing (TRIM) family proteins in regulating various substrates and signaling pathways in different tumors. However, the detailed functional role of TRIM family proteins in the progression of OS is still unknown and requires further investigations. In this study, we found that tripartite motif-containing 22 (TRIM22) was downregulated in OS tissues and was hence associated with better prognosis. In vitro and in vivo functional analysis demonstrated that TRIM22 inhibits proliferation and metastasis of OS cells. Nuclear factor erythroid 2-related factor 2 (NRF2), a redox regulator, was identified as a novel target for TRIM22. TRIM22 interacts with and accelerates the degradation of NRF2 by inducing its ubiquitination dependent on its E3 ligase activity but independent of Kelch-like ECH-associated protein 1 (KEAP1). Further, a series of gain- and loss-of-function experiments showed that knockdown or overexpression of NRF2 reversed the functions of knockdown or overexpression of TRIM22 in OS. Mechanistically, TRIM22 inhibited OS progression through NRF2-mediated intracellular reactive oxygen species (ROS) imbalance. ROS production was significantly promoted and mitochondrial potential was remarkably inhibited when overexpressing TRIM22, thus activating AMPK/mTOR signaling. Moreover, TRIM22 was also found to inhibit Warburg effect in OS cells. Autophagy activation was found in OS cells which were overexpressed TRIM22, thus leading to autophagic cell death. Treatment with N-Acetylcysteine (NAC), a ROS scavenger or the autophagy inhibitor 3-Methyladenine (3-MA) abolished the decreased malignant phenotypes in TRIM22 overexpressing OS cells. In conclusion, our study indicated that TRIM22 inhibits OS progression by promoting proteasomal degradation of NRF2 independent of KEAP1, thereby activating ROS/AMPK/mTOR/Autophagy signaling that leads to autophagic cell death in OS. Therefore, our findings indicated that targeting TRIM22/NRF2 could be a promising therapeutic target for treating OS.

收起

展开

DOI:

10.1016/j.redox.2022.102344

被引量:

43

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(266)

参考文献(52)

引证文献(43)

来源期刊

Redox Biology

影响因子:10.776

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读