-
Correlation between slow transit constipation and spleen deficiency, and gut microbiota: a pilot study.
Zeyue YU
,Liyu H
,Zongyuan LI
,Jianhui S
,Hongying C
,Hairu H
,Xiaoqin LI
,Zhongchao S
,Hongmei LI
... -
《-》
-
Transdermal Administration of Volatile Oil from Citrus aurantium-Rhizoma Atractylodis Macrocephalae Alleviates Constipation in Rats by Altering Host Metabolome and Intestinal Microbiota Composition.
The Citrus aurantium- (ZhiShi, ZS-) Rhizoma Atractylodis Macrocephalae (BaiZhu, BZ) pairs are often found in herbal formulas for constipation. The volatile oils of ZS and BZ (ZBVO) have good pharmacological activity against constipation, but the mechanism for treatment of slow transit constipation (STC) remains unclear.
A rat model using diphenoxylate tablets was constructed to investigate if transdermal administration of ZBVO would mediate intestinal microorganisms and fecal metabolites and improve STC symptoms. The regulatory effects of ZBVO at 0.15, 0.30, and 0.60 mL kg-1 d-1 on STC rats were assessed by measuring fecal water content, intestinal propulsion rate, histopathology, expression of gastrointestinal hormones, brain and intestinal peptides, and inflammatory factors. The changes in intestinal flora of STC rats were analyzed by 16S rRNA gene sequencing. Moreover, the untargeted fecal metabolomics analysis was performed by ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF-MS) technology.
The results showed that ZBVO had a modulating effect on STC by increasing the fecal water content and intestinal propulsion rate. Transdermal administration of ZBVO decreased serum levels of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) and increased the levels of gastrin (GAS) and substance P (SP). In addition, ZBVO increased 5-hydroxytryptamine (5-HT) levels and decreased vasoactive intestinal peptide (VIP) levels in colon and hippocampus tissues. The results of intestinal microbiota showed that ZBVO improved the diversity and abundance of intestinal microbiota and changed the community composition by decreasing Romboutsia and increasing Proteobacteria, Allobaculum, and Ruminococcaceae. And the feces metabolomics found that nicotinate and nicotinamide metabolism, purine metabolism, citrate cycle (TCA cycle), pyruvate metabolism, arachidonic acid metabolism, pyrimidine metabolism, and primary bile acid biosynthesis were modulated.
These findings suggest that ZBVO can alleviate STC symptoms by promoting intestinal peristalsis, increasing fecal water content, regulating gastrointestinal hormone level, reducing the inflammatory response, and regulating brain and intestinal peptides after transdermal administration. And structural changes in the intestinal microbiota are closely related to host metabolism and intestinal microbiota destroyed in STC modeling could be significantly improved by the ZBVO, which provides a reference for the development of aromatic drug macrohealth products.
Wang L
,Wang F
,Zhang X
,Chen Q
,Xu J
,Li H
,Li F
,Yang M
... -
《-》
-
Effect of fecal microbiota transplantation in patients with slow transit constipation and the relative mechanisms based on the protein digestion and absorption pathway.
Fecal microbiota transplantation (FMT) is considered an effective treatment for slow transit constipation (STC); nevertheless, the mechanism remains unclear.
In this study, eight patients with STC were selected according to the inclusion and exclusion criteria; they then received three treatments of FMT. The feces and serum of STC patients were collected after each treatment and analyzed by integrating 16 s rRNA microbiome and metabolomic analyses.
The results showed that the percentage of clinical improvement reached 62.5% and the rates of patients' clinical remission achieved 75% after the third treatment. At the same time, FMT improved the Wexner constipation scale (WCS), the Gastrointestinal Quality-of-Life Index (GIQLI) and Hamilton Depression Scale (HAMD). Fecal microbiome alpha diversity and beta diversity altered significantly after FMT. Analysis of the 16 s rRNA microbiome showed that the numbers of Bacteroidetes (Prevotell/Bacteroides) and Firmicute (Roseburia/Blautia) decreased, whereas Actinobacteria (Bifidobacterium), Proteobacteria (Escherichia), and Firmicute (Lactobacillus) increased after FMT. The metabolomics analyses showed that the stool of FMT-treated patients were characterized by relatively high levels of N-Acetyl-L-glutamate, gamma-L-glutamyl-L-glutamic acid, Glycerophosphocholine, et al., after FMT. Compared with baseline, the serum of treated patients was characterized by relatively high levels of L-Arginine, L-Threonine, Ser-Arg, Indoleacrylic acid, Phe-Tyr, 5-L-Glutamyl-L-alanine, and lower levels of Erucamide after the treatment. The correlation analysis between the metabolites and gut microbiota showed a significant correlation. For example, L-Arginine was positively correlated with lactobacillus, et al. L-Threonine was positively correlated with Anaerovibrio, Sediminibacterium but negatively correlated with Phascolarctobacterium. Erucamide had significant negative correlations with Sediminibacterium and Sharpea, while being positively correlated with Phascolarctobacterium. Enriched KEGG pathways analysis demonstrated that the protein digestion and absorption pathways gradually upregulated with the increase of FMT frequency. The L-Arginine and L-Threonine were also involved in the pathway. A large amount of Na + was absorbed in the pathway, so that it might increase mucus secretion and electrical excitability of GI smooth muscle.
Therefore, we speculated that FMT changed the patients' gut microbiota and metabolites involved in the protein digestion and absorption pathways, thereby improving the symptoms of STC. Study on the effectiveness and safety of FMT in the treatment of STC. The study was reviewed and approved by Ethics Committee of Tianjin People's Hospital (ChiCTR2000033227) in 2020.
Xie L
,Xu C
,Fan Y
,Li Y
,Wang Y
,Zhang X
,Yu S
,Wang J
,Chai R
,Zhao Z
,Jin Y
,Xu Z
,Zhao S
,Bian Y
... -
《Journal of Translational Medicine》
-
Effects of Maren Pills on the Intestinal Microflora and Short-Chain Fatty Acid Profile in Drug-Induced Slow Transit Constipation Model Rats.
Background: Slow transit constipation (STC) is becoming a common and frequently occurring disease in today's society, and it is necessary to explore the safe and effective treatment of STC. Method: Our study aimed to investigate whether the laxative effect of Maren pills (MRW) is associated with the regulation of intestinal microflora and intestinal metabolism in the colon. Loperamide hydrochloride-induced STC rats received MRW intragastrically for two consecutive weeks to evaluate the laxative effect of MRW involving the regulation of intestinal microflora, intestinal metabolism, and 5-HT signaling pathway. Intestinal microflora was detected by 16s rDNA sequencing, intestinal metabolism of short-chain fatty acids (SCFAs) was detected by HPLC, and the 5-HT signaling pathway was detected by WB, ELISA, immunofluorescence, and immunohistochemical analysis. Results: Our results revealed that the treatments with MRW increased not only the body weight, 24-h fecal number, 24-h wet fecal weight, 24-h dry fecal weight, fecal water content, and the intestinal propulsion rate but also the colonic goblet cell number, colonic Muc-2 protein expression, and colonic mucus layer thickness in the STC model rats. Moreover, MRW activated the 5-HT pathway by increasing the levels of 5-HT, 5-HIAA, 5-HT4R, CFTR, cAMP, and PKA in the colon tissue of STC rats. The 16S rDNA sequencing results showed that MRW improved the colonic microflora structure in colonic contents of STC rats, mainly by increasing Lactobacillus and decreasing Prevotella. Finally, we found that MRW regulated the SCFA metabolism in the colonic contents of the STC rats, mainly by increasing the contents of acetic acid, propionic acid, and butyric acid; the relative abundance of Lactobacillus was positively correlated with either contents of acetic acid, propionic acid, and butyric acid, and the relative abundance of Clostridium was negatively correlated. Conclusion: Our study further showed that MRW could improve constipation in STC rats, and the mechanism may be by regulating the intestinal microflora structure and improving the metabolism of SCFAs.
Zhan Y
,Wen Y
,Du LJ
,Wang XX
,Tang SY
,Kong PF
,Huang WG
,Tang XG
... -
《-》
-
Ameliorative effects of the mixed aqueous extract of Aurantii Fructus Immaturus and Magnoliae Officinalis Cortex on loperamide-induced STC mice.
Aurantii fructus immaturus (AFI) and Magnoliae Officinalis Cortex (MOC) have been used to treat constipation in China for thousands of years. In this study, a mouse model of slow transit constipation (STC) was established by gavage of loperamide at a dose of 10 mg/kg bw/day for seven days. Seventy-two mice were randomly allocated to six groups (control, STC model, 3 g/kg AFI + MOC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride). A mixed aqueous extract of AFI and MOC was administered to the STC mice at the corresponding doses from the first day of modelling. Body weight, faecal water content, gastrointestinal transit time, and intestinal propulsion rate were evaluated. Serum levels of neurotransmitters and gastrointestinal hormones, colonic expression of aquaporins (AQP), and interstitial cells of Cajal (ICC) were assessed using ELISA, immunohistochemistry, and Western blot analysis. The abundance and diversity of the gut microbiota were analysed by 16S rRNA gene sequencing. The mixed aqueous extract significantly increased faecal water content and intestinal propulsion rate and shortened gastrointestinal transit time in STC mice. Furthermore, the administration of AFI and MOC significantly decreased serum vasoactive intestinal peptide (VIP), nitric oxide (NO), and somatostatin (SS) levels and increased serum motilin (MTL) levels in STC mice. The protein expression levels of AQP3 and AQP4 in the colon tissue of STC mice significantly decreased following AFI + MOC treatment, whereas those of AQP9 significantly increased. Moreover, the AFI + MOC treatment led to an increase in the number and functionality of ICCs. In addition, the relative abundances of Ruminococcus and Oscillospira increased in response to the administration of AFI + MOC in STC mice. In conclusion, the mixed aqueous extract of AFI and MOC promoted defaecation and increased intestinal mobility in STC mice. Its mechanisms of action involve modulatory effects on neurotransmitters, gastrointestinal hormones, AQPs, and ICCs. AFI + MOC treatment also improved the diversity and abundance of the gut microbiota in STC mice, particularly short-chain fatty acid-producing bacteria, which may play an important role in its beneficial effect on constipation.
Cai T
,Dong Y
,Feng Z
,Cai B
... -
《-》