First report of whole-genome analysis of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate with bedaquiline, linezolid and clofazimine resistance from Uganda.

来自 PUBMED

摘要:

Uganda remains one of the countries with the highest burden of TB/HIV. Drug-resistant TB remains a substantial challenge to TB control globally and requires new strategic effective control approaches. Drug resistance usually develops due to inadequate management of TB patients including improper treatment regimens and failure to complete the treatment course which may be due to an unstable supply or a lack of access to treatment, as well as patient noncompliance. Two sputa samples were collected from Xpert MTB/RIF® assay-diagnosed multi-drug resistant tuberculosis (MDR-TB) patient at Lira regional referral hospital in northern Uganda between 2020 and 2021 for comprehensive routine mycobacterial species identification and drug susceptibility testing using culture-based methods. Detection of drug resistance-conferring genes was subsequently performed using whole-genome sequencing with Illumina MiSeq platform at the TB Supranational Reference Laboratory in Uganda. In both isolates, extensively drug-resistant TB (XDR-TB) was identified including resistance to Isoniazid (katG p.Ser315Thr), Rifampicin (rpoB p.Ser450Leu), Moxifloxacin (gyrA p.Asp94Gly), Bedaquiline (Rv0678 Glu49fs), Clofazimine (Rv0678 Glu49fs), Linezolid (rplC Cys154Arg), and Ethionamide (ethA c.477del). Further analysis of these two high quality genomes revealed that this 32 years-old patient was infected with the Latin American Mediterranean TB strain (LAM). This is the first identification of extensively drug-resistant Mycobacterium tuberculosis clinical isolates with bedaquiline, linezolid and clofazimine resistance from Uganda. These acquired resistances were because of non-adherence as seen in the patient's clinical history. Our study also strongly highlights the importance of combating DR-TB in Africa through implementing next generation sequencing that can test resistance to all drugs while providing a faster turnaround time. This can facilitate timely clinical decisions in managing MDR-TB patients with non-adherence or lost to follow-up.

收起

展开

DOI:

10.1186/s13756-022-01101-2

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(708)

参考文献(22)

引证文献(9)

来源期刊

Antimicrobial Resistance and Infection Control

影响因子:6.448

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读