Contrast-Enhanced Ultrasound-Magnetic Resonance Imaging Radiomics Based Model for Predicting the Biochemical Recurrence of Prostate Cancer: A Feasibility Study.

来自 PUBMED

作者:

Wang YFeng GWang JAn PDuan PHu YYe YLi YQin PSong P

展开

摘要:

This study was aimed at developing a model for predicting postoperative biochemical recurrence of prostate cancer (PCa) using clinical data-CEUS-MRI radiomics and at verifying its clinical effectiveness. The clinical imaging data of 159 patients pathologically confirmed with PCa and who underwent radical prostatectomy in Xiangyang No. 1 People's Hospital and Jiangsu Hospital of Chinese Medicine from March 2016 to December 2020 were retrospectively analyzed. According to the 2-5-year follow-up results, the patients were divided into the biochemical recurrence (BCR) group (n = 59) and the control group (n = 100). The training set and test set were established in the proportion of 7/3; 4 prediction models were established based on the clinical imaging data. In training set, the area under the curve (AUC) and decision curve analysis (DCA) by R was conducted to compare the efficiency of 4 prediction models, and then, external validation was performed using the test set. Finally, a nomogram tool for predicting BCR was developed. Univariate regression analysis confirmed that the SmallAreaHighGrayLevelEmphasis, RunVariance, Contrast, tumor diameter, clinical T stage, lymph node metastasis, distant metastasis, Gleason score, preoperative PSA, treatment method, CEUS-peak intensity (PI), time to peak (TTP), arrival time (AT), and elastography grade were the influencing factors for predicting BCR. In the training set, the AUC of combinatorial model demonstrated the highest efficiency in predicting BCR [AUC: 0.914 (OR 0.0305, 95% CI: 0.854-0.974)] vs. the general clinical data model, the CEUS model, and the MRI radiomics model. The DCA confirmed the largest net benefits of the combinatorial model. The test set validation gave consistent results. The nomogram tool has been well applied clinically. The previous clinical and imaging data alone did not perform well for predicting BCR. Our combinatorial model firstly using clinical data-CEUS-MRI radiomics provided an opportunity for clinical screening of BCR and help improve its prognosis.

收起

展开

DOI:

10.1155/2022/8090529

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(128)

参考文献(21)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读