Tumor microenvironment responsive polypeptide-based supramolecular nanoprodrugs for combination therapy.
摘要:
Tumor microenvironment responsive nanomedicine has drawn considerable attention for combination therapy, but still remains a significant challenge for less side effects and enhanced anti-tumor efficiency. Herein, we develop a pH/ROS dual-responsive supramolecular polypeptide nanoprodrug (PFW-DOX/GOD) by using pillar[5]arene-based host-guest strategy for combined glucose degradation, chemodynamic therapy (CDT), and chemotherapy (CT). The PFW-DOX/GOD consists of a pH-responsive ferrocene/pillar[5]arene-containing polypeptide, a ROS-responsive polyprodrug, and encapsulated glucose oxidase (GOD). Upon into intracellular acidic environment, PFW-DOX/GOD exhibits rapid pH-triggered disassembly behavior. Simultaneously, the released GOD can catalyze intratumoral glucose into massive H2O2, which are further converted into highly toxic hydroxyl radicals (•OH) by the catalysis of ferrocene via the Fenton reaction. Thereafter, induced by the ROS-responsive cleavage of thioketal linkage, the conjugated DOX prodrug was released and activated. The combined glucose degradation, chemodynamic therapy (CDT), and chemotherapy (CT) of PFW-DOX/GOD present anti-tumor effect with 96% of tumor inhibitory rate (TIR). Therefore, such tumor microenvironment-responsive supramolecular polypeptide nanoprodrugs represent a potential candidate for combination therapy with minimal side effects. STATEMENT OF SIGNIFICANCE: In this work, a tumor microenvironment-responsive supramolecular polypeptide nanoprodrug (PFW-DOX/GOD) was prepared via pillar[5]arene-based host-guest interactions, and presented low side effects and high tumor accumulation owing to the diameters of about 200 nm and surface PEG segment. After pH-responsive release of GOD in the intracellular acidic environment, the cascade catalytic reactions including GOD-catalyzed degradation of intratumoral glucose and Fenton reaction, effectively happened to generate •OH for chemodynamic therapy (CDT), which subsequently induced the cleavage of thioketal linkage to activate free DOX for chemotherapy (CT). Collectively, this supramolecular polypeptide nanoprodrugs provide a promising strategy for combination therapy with synergetic anti-tumor effect.
收起
展开
DOI:
10.1016/j.actbio.2022.04.027
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(414)
参考文献(0)
引证文献(5)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无