-
Importance of Gedunin in Antagonizing Rheumatoid Arthritis via Activating the Nrf2/ARE Signaling.
This study assessed the anti-arthritic effect and protection of Gedunin (GDN) on joint tissues and revealed the possible mechanism in suppressing rheumatoid arthritis (RA).
LPS-induced macrophages and TNF-α-stimulated synovial fibroblasts (MH7A) or IL-1β-stimulated primary rheumatoid arthritis synovial fibroblasts (RASFs) were used to evaluate the antiinflammatory effect of GDN. In addition, CIA-induced arthritis was employed here to evaluate the anti-arthritic effect. MTT and BRDU assays were utilized to evaluate the cell viability and proliferation, Q-PCR was conducted to detect the mRNA expression of cytokines, FACS was adopted to monitor ROS production, while western blotting (WB) and siRNA interference were applied in confirming the anti-arthritic effects of GDN via the Nrf2 signaling. Results. In vitro, cell viability was inhibited in macrophages and MH7A cells, but not in RASFs; but the proliferation of RASFs was significantly suppressed in time- and dose-dependent manners. GDN suppressed cytokine levels in LPS-stimulated macrophages and TNF-α-stimulated MH7A cells or RASFs. GDN suppressed ROS expression. Furthermore, GDN treatment notably dose-dependently decreased the mRNA and protein expression of iNOS in LPS-induced macrophages. sip62 interference results showed that GDN cause the less expression of HO-1 and Keap1 and also fail to inhibit cytokines after sip62 interference. In vivo, GDN effectively inhibited paw swelling, arthritis score, and arthritis incidence and cytokines.
Our study suggested that GDN exhibited strong antagonistic effect on arthritis both in vitro and in vivo via activation of Nrf2 signaling. Our work will provide a promising therapeutic strategy for RA.
Chen JY
,Tian XY
,Liu WJ
,Wu BK
,Wu YC
,Zhu MX
,Jin-Liu
,Zhou X
,Zheng YF
,Ma XQ
,Huang MQ
... -
《-》
-
7-deacetyl-gedunin suppresses proliferation of Human rheumatoid arthritis synovial fibroblast through activation of Nrf2/ARE signaling.
Rheumatoid arthritis (RA) is an chronic autoimmune disease and characterized by high incidence. However, there is no effective therapies for RA. Therefore, it is urgent to discover new drugs for RA treatment. Nuclear factor erythroid 2 (NF-E2)-related factor (Nrf2) can effectively protect against arthritic inflammatory diseases through diverse stages, such as regulating redox balance, detoxification, metabolism and inflammation. Dimethyl fumarate (DMF), targets the Nrf2 pathway, was approved by FDA for the clinical treatment of multiple sclerosis (MS), which is another autoimmune disease. The latest report shown that DMF ameliorates complete Freund's adjuvant-induced arthritis in rats through activation of the Nrf2/HO-1 signaling pathway. Hence, Nrf2 serves as an important target for inflammation interference and oxidative stress of macrophages and RASFs in RA; therefore, it can be adopted as an effective therapeutic approach in the future. Rheumatoid arthritis synovial fibroblasts (RASFs) play crucial roles in the RA pathogenesis. Our results revealed that 7-deacetyl-gedunin (7-d-GDN), derived from fruits of Toona sinensis (A. Juss.) Roem, significantly inhibited RASFs proliferation in dose- and time- dependent manners and inhibited cell viability in MH7A cells, which is a kind of immortal cell line from joints of patients with RA. Additionally, 7-d-GDN remarkably down-regulated MMP-1/3/9/13 in RASFs, IL-6 and IL-33 in MH7A cells. Besides, 7-d-GDN sharply inhibited reactive oxygen species (ROS) in RASFs. Further mechanistic study demonstrated that 7-d-GDN induced heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone 1(NQO1), which all participated in suppressing of oxidative stress. Additionally, 7-d-GDN increased sequestosome 1 (SQSTM1, p62), causing down-regulating Kelch-like ECH-associated protein 1 (Keap1), which resulting in NF-E2-related factor 2 (Nrf2) cytoplasm accumulation and subsequently translocation into nucleus. Collectively, 7-d-GDN exerts the anti-inflammatory effect through regulating anti-oxidative enzymes via p62/ Nrf2/ARE signaling. All suggest that the potential of 7-d-GDN in suppression of inflammation, especially antagonizing RA severity. Our works support for drugs discovery in RA treatment.
Chen J
,Zhu G
,Sun Y
,Wu Y
,Wu B
,Zheng W
,Ma X
,Zheng Y
... -
《-》
-
Perillyl alcohol attenuates rheumatoid arthritis via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways: A comprehensive study onin-vitro and in-vivo experimental models.
Rheumatoid arthritis is a chronic and idiopathic autoimmune disorder. Perillyl alcohol (POH) is a monoterpene which can be extracted from widely available essential oils and is known for its strong anti-inflammatory and anti-oxidant properties.
Recent studies have been proven that inhibitors of farnesyltransferase enzyme showed significant anti-arthritic activity. POH is one such natural molecule having anti-inflammatory and anti-oxidant properties by inhibiting farnesyltransferase enzyme which further down regulates NF-κB and Nrf2 via Ras/Raf/MAPK pathway. Also, the effect of POH against rheumatoid arthritis is not known yet. Hence, the present research was intended to assess the anti-arthritic potential of POH in-vitro and in-vivo.
The in-vitro effects of POH on RAW 264.7 cells stimulated with LPS 1 µg/ml were investigated to its potential therapeutic effects. CFA 100 µl was intradermally administered to rats for the induction of arthritis. POH 100 mg/kg and 200 mg/kg administered topically from day 1 to day 28. Paw volumes measured, radiography analysis, anti-oxidant status, Gene expression studies, western blot analysis and histological analysis were performed to check the effects of POH.
Our in-vitro findings suggested that POH inhibits inflammation by suppressing reactive oxygen species (ROS), NF-кB and Nrf2 signaling axis. Besides this, POH also rescinded the nitrate levels, pro-inflammatory cytokine levels like IL-1β, IL-6 and TNF-α also PGE2 and COX-2 levels induced by LPS in murine macrophages. Additionally, our in-vivo results revealed that POH conscientiously alleviated CFA induced inflammation by restoring arthritis index, body weight, nitrosative, lipid peroxidation assays. Macroscopically through measuring paw volumes and X-ray, it was evidenced that POH has decreased inflammation and bone erosion. Not only in-vitro but also in-vivo, POH has abridged cytokine levels IL-1β, IL-6, and TNF-α. Histopathological evaluation presented POH treatment alleviated joint inflammation, pannus formation, and bone erosion significantly. Moreover, POH suppressed the protein expression of NF-кB, COX-2, iNOS and improved Nrf2, and SOD2 levels in paw tissues estimated by western blotting.
POH was effective in ameliorating LPS stimulation mediated oxidative stress and pro-inflammatory cytokines in RAW 264.7 cells in-vitro and FCA induced arthritis in rats in-vivo through its anti-inflammatory effects via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways..
Puppala ER
,Jain S
,Saha P
,Rachamalla M
,Np S
,Yalamarthi SS
,Abubakar M
,Chaudhary A
,Chamundeswari D
,Usn M
,Gangasani JK
,Naidu VGM
... -
《-》
-
Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts.
The activation of synovial fibroblasts (SFs) and the subsequent production and expression of pro-inflammatory cytokines play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). In the current study, rheumatoid arthritis synovial fibroblasts (RASFs) isolated from the joint of the patients were used to evaluate the suppressive effects of calycosin (CAL), a compound derived from the Chinese medicinal herb Radix Astragali, on the expression of pro-inflammatory cytokines in RASFs. The results demonstrated that increased mRNA expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-25 (IL-25), interleukin-33(IL-33) were significantly inhibited by CAL. Furthermore, the compound obviously suppressed IL-6 and IL-33 secretion. The key inflammatory mediator, cyclooxygenase-2 (COX-2) was significantly attenuated by CAL. A mechanistic study showed that the antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone 1(NQO1) and Nrf2 of RASFs were markedly activated by CAL. Furthermore, CAL potentiated the accumulation of sequestosome 1 (SQSTM1, p62) and the degradation of Kelch-like ECH-associated protein 1 (Keap1), thereby inducing Nrf2 translocation from the cytoplasm to the nucleus. Thus, CAL suppresses the expression of pro-inflammatory cytokines via p62/Nrf2-linked HO-1 induction in RASFs, which suggests that the compound should be further investigated as a candidate anti-inflammatory and anti-arthritic agent.
Su X
,Huang Q
,Chen J
,Wang M
,Pan H
,Wang R
,Zhou H
,Zhou Z
,Liu J
,Yang F
,Li T
,Liu L
... -
《-》
-
Sinomenine protects bone from destruction to ameliorate arthritis via activating p62(Thr269/Ser272)-Keap1-Nrf2 feedback loop.
Disease-modifying antirheumatic drugs (DMARDs) are the first line medications to treat rheumatoid arthritis (RA), a chronic and systemic autoimmune disease affecting multiple joints. Sinomenine (SIN) is thought a natural DMARD (nDMARD) and effectively utilized to treat RA in clinic for several decades in China. Here we reported that it is not methotrexate (MTX), a representative drug of DMARDs, but SIN protected joints from destruction to alleviate the symptoms of the mice with arthritis, indicating that the underlying mechanism of SIN is different from MTX to treat arthritis. Due to the dominate role of synovium fibroblasts in the joint destruction of arthritis, we applied synovium fibroblasts derived from RA patients (RASFs) to investigate the anti-arthritic effect and explore the underlying mechanism of SIN. We found that SIN significantly inhibited the secretion of IL-6 and IL-33 and ROS production in RASFs to mediate protective effect on bone destruction to mediate anti-arthritis effect. Underlying mechanistic study showed that SIN induced phosphorylation of p62 at Ser349 and Thr269/Ser272 to activate Keap1-Nrf2 signaling in RASFs. In line with the results, we then observed that the anti-arthritic effect of SIN was significantly attenuated in Nrf2 deficient (Nrf2-/-) mice. Notably, we found that p62 expression and phosphorylation at Thr269/Ser272 remarkably reduced, while p62 phosphorylation at Ser351 was up-regulated in Nrf2 deficient mice compared to its wild littermates, indicating that Nrf2 probably negative regulates p62 phosphorylation at Ser351. Collectively, our findings demonstrate that SIN phosphorylated p62 at Ser351 (corresponding to human Ser349) to degrade Keap1 expression and accumulate Nrf2 expression, increased p62 expression and phosphorylation at Thr269/Ser272 to activate p62-Keap1-Nrf2 axis, and finally exerted anti-arthritic effect. The current study not only clarified the anti-arthritic characteristics of SIN but also provided the clue to elucidate the correlation of p62 phosphorylation sites and Nrf2 signaling activation.
Liao K
,Su X
,Lei K
,Liu Z
,Lu L
,Wu Q
,Pan H
,Huang Q
,Zhao Y
,Wang M
,Cai J
,Liu L
,Li T
... -
《-》