Myositis-specific autoantibodies in clinical practice: Improving the performance of the immunodot.

来自 PUBMED

作者:

Bories EFortenfant FPugnet GRenaudineau YBost C

展开

摘要:

Idiopathic inflammatory myopathies (IIM) diagnosis and sub-classification can be improved by detection of myositis specific antibodies (MSA) as a first step in diagnosis. However, when using semi-quantitative immunodots for MSA detection, clinical assay performance needs to be improved. A retrospective study was done for the "myositis" and "synthetase" immunodots (SRP, NXP2, TIF1gamma, SAE1/2, Mi2, MDA5, Jo1, PL7, PL12, EJ, OJ, KS, ZO and HA) from D-Tek used for 270 patients who had tested positive for MSA in a tertiary laboratory hospital. Results from this analysis revealed: (i) none of the 60 healthy controls presented MSA; (ii) a low assay specificity among patients who tested positive for MSA, 128/270 (47%) were labeled IIM based on the manufacturer's recommended threshold; (iii) in non-IIM patients (53%), the MSA spectrum overlaps predominantly with other autoimmune diseases or idiopathic interstitial lung disease; and (iv) use of a clinical cut-off improves assay specificity for anti-SRP, anti-NXP2, anti-MDA5, anti-Jo1 and anti-PL7 Abs. Determining the clinical threshold of the semi-quantitative immunodot assay for MSA is effective for improving its capacity to discriminate IIM from non-IIM and, when IIM diagnosis is excluded, another autoimmune disease or an idiopathic interstitial lung disease should be considered in front of a positive MSA.

收起

展开

DOI:

10.1016/j.semarthrit.2022.151998

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(154)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读