Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy.
摘要:
Folic acid (FA) and 2-(Diisopropylamino) ethyl methacrylate (DPA) double grafted trimethyl chitosan (TMC) nanoparticles (FTD NPs) were synthesized for the co-delivery of doxorubicin (DOX) and Survivin CRISPR/Cas9-expressing plasmid (sgSurvivin pDNA) or Survivin shRNA-expressing plasmid (iSur pDNA). FA modification enhanced the uptake of DOX and pDNA loaded into FTD NPs in tumor cells. A rapid release of DOX was triggered under acidic conditions due to pH-sensitiveness of FTD NPs arising from DPA conjugation. Negligible differences between FTD/sgSurvivin pDNA NPs and FTD/iSur pDNA NPs demonstrated that RNA interference (RNAi) and CRISPR/Cas9 technologies possessed comparable antitumor efficiency. Notably, the in vitro and in vivo antitumor efficacies of FTD/DOX/sgSurvivin pDNA NPs were superior to those of single delivery of DOX or sgSurvivin pDNA, while were comparable to those of FTD/DOX/iSur pDNA NPs. These results suggested that the combination of chemotherapeutics and CRISPR/Cas9 systems would provide a potential modality for cancer therapy.
收起
展开
DOI:
10.1016/j.carbpol.2022.119315
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(121)
参考文献(0)
引证文献(15)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无