Identification of Potential Molecular Mechanism Related to Infertile Endometriosis.

来自 PUBMED

作者:

Li XGuo LZhang WHe JAi LYu CWang HLiang W

展开

摘要:

In this research, we aim to explore the bioinformatic mechanism of infertile endometriosis in order to identify new treatment targets and molecular mechanism. The Gene Expression Omnibus (GEO) database was used to download MRNA sequencing data from infertile endometriosis patients. The "limma" package in R software was used to find differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was used to classify genes into modules, further obtained the correlation coefficient between the modules and infertility endometriosis. The intersection genes of the most disease-related modular genes and DEGs are called gene set 1. To clarify the molecular mechanisms and potential therapeutic targets for infertile endometriosis, we used Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia (KEGG) enrichment, Protein-Protein Interaction (PPI) networks, and Gene Set Enrichment Analysis (GSEA) on these intersecting genes. We identified lncRNAs and miRNAs linked with infertility and created competing endogenous RNAs (ceRNA) regulation networks using the Human MicroRNA Disease Database (HMDD), mirTarBase database, and LncRNA Disease database. Firstly, WGCNA enrichment analysis was used to examine the infertile endometriosis dataset GSE120103, and we discovered that the Meorangered1 module was the most significantly related with infertile endometriosis. The intersection genes were mostly enriched in the metabolism of different amino acids, the cGMP-PKG signaling pathway, and the cAMP signaling pathway according to KEGG enrichment analysis. The Meorangered1 module genes and DEGs were then subjected to bioinformatic analysis. The hub genes in the PPI network were performed KEGG enrichment analysis, and the results were consistent with the intersection gene analysis. Finally, we used the database to identify 13 miRNAs and two lncRNAs linked to infertility in order to create the ceRNA regulatory network linked to infertile endometriosis. In this study, we used a bioinformatics approach for the first time to identify amino acid metabolism as a possible major cause of infertility in patients with endometriosis and to provide potential targets for the diagnosis and treatment of these patients.

收起

展开

DOI:

10.3389/fvets.2022.845709

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(159)

参考文献(37)

引证文献(8)

来源期刊

Frontiers in Veterinary Science

影响因子:3.468

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读