Identification of Potential Molecular Mechanism Related to Infertile Endometriosis.
In this research, we aim to explore the bioinformatic mechanism of infertile endometriosis in order to identify new treatment targets and molecular mechanism.
The Gene Expression Omnibus (GEO) database was used to download MRNA sequencing data from infertile endometriosis patients. The "limma" package in R software was used to find differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was used to classify genes into modules, further obtained the correlation coefficient between the modules and infertility endometriosis. The intersection genes of the most disease-related modular genes and DEGs are called gene set 1. To clarify the molecular mechanisms and potential therapeutic targets for infertile endometriosis, we used Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia (KEGG) enrichment, Protein-Protein Interaction (PPI) networks, and Gene Set Enrichment Analysis (GSEA) on these intersecting genes. We identified lncRNAs and miRNAs linked with infertility and created competing endogenous RNAs (ceRNA) regulation networks using the Human MicroRNA Disease Database (HMDD), mirTarBase database, and LncRNA Disease database.
Firstly, WGCNA enrichment analysis was used to examine the infertile endometriosis dataset GSE120103, and we discovered that the Meorangered1 module was the most significantly related with infertile endometriosis. The intersection genes were mostly enriched in the metabolism of different amino acids, the cGMP-PKG signaling pathway, and the cAMP signaling pathway according to KEGG enrichment analysis. The Meorangered1 module genes and DEGs were then subjected to bioinformatic analysis. The hub genes in the PPI network were performed KEGG enrichment analysis, and the results were consistent with the intersection gene analysis. Finally, we used the database to identify 13 miRNAs and two lncRNAs linked to infertility in order to create the ceRNA regulatory network linked to infertile endometriosis.
In this study, we used a bioinformatics approach for the first time to identify amino acid metabolism as a possible major cause of infertility in patients with endometriosis and to provide potential targets for the diagnosis and treatment of these patients.
Li X
,Guo L
,Zhang W
,He J
,Ai L
,Yu C
,Wang H
,Liang W
... -
《Frontiers in Veterinary Science》
Gene expression analysis in endometriosis: Immunopathology insights, transcription factors and therapeutic targets.
Endometriosis is recognized as an estrogen-dependent inflammation disorder, estimated to affect 8%-15% of women of childbearing age. Currently, the etiology and pathogenesis of endometriosis are not completely clear. Underlying mechanism for endometriosis is still under debate and needs further exploration. The involvement of transcription factors and immune mediations may be involved in the pathophysiological process of endometriosis, but the specific mechanism remains to be explored. This study aims to investigate the underlying molecular mechanisms in endometriosis.
The gene expression profile of endometriosis was obtained from the gene expression omnibus (GEO) database. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied to the endometriosis GSE7305 datasets. Cibersort and MCP-counter were used to explore the immune response gene sets, immune response pathway, and immune environment. Differentially expressed genes (DEGs) were identified and screened. Common biological pathways were being investigated using the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Transcription factors were from The Human Transcription Factors. The least absolute shrinkage and selection operator (Lasso) model identified four differential expressions of transcription factors (AEBP1, HOXB6, KLF2, and RORB). Their diagnostic value was calculated by receiver operating characteristic (ROC) curve analysis and validated in the validation cohort (GSE11691, GSE23339). By constructing the interaction network of crucial transcription factors, weighted gene coexpression network analysis (WGCNA) was used to search for key module genes. Metascape was used for enrichment analysis of essential module genes and obtained HOXB6, KLF2. The HOXB6 and KLF2 were further verified as the only two intersection genes according to Support Vector Machine Recursive Feature Elimination (SVM-RFE) and random forest models. We constructed ceRNA (lncRNA-miRNA-mRNA) networks with four potential transcription factors. Finally, we performed molecular docking for goserelin and dienogest with four transcription factors (AEBP1, HOXB6, KLF2, and RORB) to screen potential drug targets.
Immune and metabolic pathways were enriched in GSVA and GSEA. In single sample gene set enrichment analysis (ssGSEA), most immune infiltrating cells, immune response gene sets, and immune response pathways are differentially expressed between endometriosis and non-endometriosis. Twenty-seven transcription factors were screened from differentially expressed genes. Most of the twenty-seven transcription factors were correlated with immune infiltrating cells, immune response gene sets and immune response pathways. Furthermore, Adipocyte enhancer binding protein 1 (AEBP1), Homeobox B6 (HOXB6), Kruppel Like Factor 2 (KLF2) and RAR Related Orphan Receptor B (RORB) were selected out from twenty-seven transcription factors. ROC analysis showed that the four genes had a high diagnostic value for endometriosis. In addition, KLF2 and HOXB6 were found to play particularly important roles in multiple modules (String, WGCNA, SVM-RFE, random forest) on the gene interaction network. Using the ceRNA network, we found that NEAT1 may regulate the expressions of AEBP1, HOXB6 and RORB, while X Inactive Specific Transcript (XIST) may control the expressions of HOXB6, RORB and KLF2. Finally, we found that goserelin and dienogest may be potential drugs to regulate AEBP1, HOXB6, KLF2 and RORB through molecular docking.
AEBP1, HOXB6, KLF2, and RORB may be potential biomarkers for endometriosis. Two of them, KLF2 and HOXB6, are critical molecules in the gene interaction network of endometriosis. Discovered by molecular docking, AEBP1, HOXB6, KLF2, and RORB are targets for goserelin and dienogest.
Geng R
,Huang X
,Li L
,Guo X
,Wang Q
,Zheng Y
,Guo X
... -
《Frontiers in Immunology》