Alleviation of drought stress by root-applied thiourea is related to elevated photosynthetic pigments, osmoprotectants, antioxidant enzymes, and tubers yield and suppressed oxidative stress in potatoes cultivars.

来自 PUBMED

作者:

Saleem MHWang XParveen APerveen SMehmood SFiaz SAli SHussain SAdnan MIqbal NAlatawi AAli S

展开

摘要:

The growth and productivity of plants are enhanced by the use of thiourea (TU) under stressful conditions. When TU is applied as a rooting medium, it improves plant growth characteristics and other physiological parameters in stressed environment. A pot experiment was conducted in the botanical garden of the Government College University, Faisalabad 38000, Pakistan to examine the TU-mediated fluctuations in some crucial physio-biochemical parameters and the oxidative defense of potatoes under a restricted water supply. For this purpose, two potato cultivars (potato-SH-5 and potato-FD-73) were sown in pots containing 10 kg of soil. Water was regularly applied to the pots until germination. After 2 weeks of germination, drought stress with 65% field capacity was imposed, while the control was subjected to 100% field capacity. TU, as a rooting medium, was applied at the vegetative stage (0 (no application), 0.5, 0.75 mM). A substantial reduction in the total number of leaves, leaf area, tuber biomass (fresh and dry weight), photosynthetic pigments, membrane permeability, and leaf relative water content (RWC) was recorded in plants under drought stress conditions as compared to control plants. The damaging effects of water stress were more critical for cv. potato-FD-73 as compared to cv. potato-SH-5. In contrast, drought stress enhanced the malondialdehyde (MDA) and hydrogen peroxide (H2O2) content while also increased antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) and triggered the accumulation of soluble proteins, soluble sugars, proline, and phenolic and anthocyanin contents. However, TU applied as rooting medium at 0.5 and 0.75 mM was effective in reducing the detrimental effects of water stress in both cultivars. Furthermore, increasing levels of TU enhanced chlorophyll pigments, dissolved proteins, complete dissolved sugars, and enzymatic capabilities of POD, SOD, and CAT, while reducing the MDA and H2O2 in both cultivars under stress conditions. In conclusion, TU improved the yield and chlorophyll pigments of potato plants by mitigating the adverse effects of drought stress through reduced EL, MDA, and H2O2 contents and improved activities of enzymatic and non-enzymatic antioxidants and osmoprotectants.

收起

展开

DOI:

10.7717/peerj.13121

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(157)

参考文献(41)

引证文献(2)

来源期刊

PeerJ

影响因子:3.058

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读