Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation.
摘要:
The emerging of solar-driven interfacial evaporation provides new opportunities to alleviate the shortage of fresh water resource. Nevertheless, in practical solar desalination, salt precipitation will lead to the decrease of evaporation rate due to reduced light absorption and blocked evaporation channels of evaporator. It still remains a challenge to eliminate salt accumulation and simultaneously maintain high-efficient evaporation. In this work, a solar evaporator was prepared based on reduced graphene oxide and chitosan coated honeycomb-structured fabric (rCHF). The rCHF showed a high light absorbance of 97.2% due to enhanced light trapping of the honeycomb structure and ultra-low thermal conductivity of 0.044 W m-1 K-1. Furthermore, the temperature gradient generated inside the honeycomb unit can induce the Marangoni effect, which led to the site-specific salt crystallization on rCHF in seawater evaporation. As a result, the rCHF realized an excellent solar evaporation rate of 2.02 kg m-2h-1 under one sun irradiation (1 kW m-2). The site-specific salt crystallization on the surface of rCHF ensured stable evaporation even in 20% brine, and the isolated salt can be removed by natural dissolution owing to the excellent hydrophilicity of rCHF. This work provides a new perspective for the design of solar evaporator for practical solar seawater desalination.
收起
展开
DOI:
10.1016/j.jcis.2022.03.122
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(487)
参考文献(0)
引证文献(3)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无