Identification of Survival-Related Metabolic Genes and a Novel Gene Signature Predicting the Overall Survival for Patients with Uveal Melanoma.

来自 PUBMED

作者:

Guo XYu XLi FXia QRen HChen ZXing Y

展开

摘要:

Uveal melanoma (UM) is the most common primary intraocular malignancy among adults. Altered metabolism has been shown to contribute to the development of cancer closely, but the prognostic role of metabolism in UM remains to be explored. This study aimed to construct a metabolic-related signature for UM. We collected the mRNA sequencing data and corresponding clinical information from The Cancer Genome Atlas and Gene Expression Omnibus databases. A univariate Cox regression analysis, the Lasso-penalized Cox regression analysis, and multivariate Cox regression analyses were used to construct a metabolic signature based on TCGA. The time-dependent ROC and Kaplan-Meier survival curves were calculated to validate the prognostic ability of the signature. The immune-related features and mutation profile were characterized by CIBERSORT and maftools between high- and low-risk groups. A novel metabolic-related signature (risk score = -0.246*SLC25A38 - 0.50186*ABCA12 + 0.032*CA12 + 0.086*SYNJ2) was constructed to predict the prognosis of UM patients. In TCGA and GSE22138, the signature had high sensitivity and specificity in predicting the prognosis of UM patients (survival probability; p < 0.0001, p = 0.012) . Gene Ontology pathway enrichment analysis and GSEA were used to discriminate several significantly enriched metabolism-related pathways, including channel activity and passive transmembrane transporter activity, which may reveal the underlying mechanisms. The high-risk group had more immune cell infiltration and greater distribution of BAP1 mutations. Our study developed a robust metabolic-gene signature based on TCGA to predict the prognosis of UM patients. The signature indicates a dysregulated metabolic microenvironment and provides new metabolic biomarkers and therapeutic targets for UM patients.

收起

展开

DOI:

10.1159/000524505

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(197)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读