Evaluation of optical genome mapping for detecting chromosomal translocation in clinical cytogenetics.

来自 PUBMED

作者:

Dai PZhu XPei YChen PLi JGao ZLiang YKong X

展开

摘要:

Balanced reciprocal translocation is one of the most common chromosomal abnormalities in humans that may lead to infertility, recurrent pregnancy loss, or having children with physical or mental abnormalities. Karyotyping and FISH are traditional detection approaches with a low resolution. Bionano optical genome mapping (OGM) developed in recent years can be used to analyze chromosomal abnormalities at a higher resolution, providing the possibility of more in-depth analyses of balanced chromosome translocations. To evaluate the feasibility of OGM to detect chromosome balanced translocations, 10 genetic outpatients were collected and detected simultaneously by karyotype analysis, FISH, CNV-seq, and Bionano OGM in this study. The results showed that the karyotypes of the patients were detected by karyotype analysis, FISH, and Bionano OGM, but one patient with karyotype t(Y,19) was not correctly detected by OGM. There were not find any chromosome abnormality by CNV-seq. More importantly, OGM allowed the location of the mutation to the gene level, which is important for aiding diagnoses, compared to karyotype analysis, and FISH. This study shows that OGM can be a high adjunctive diagnostic method for detecting balanced chromosome translocations, but the accuracy and precision of OGM detecting mutations need to be gradually improved in telomere and centromere regions.

收起

展开

DOI:

10.1002/mgg3.1936

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(183)

参考文献(24)

引证文献(10)

来源期刊

Molecular Genetics & Genomic Medicine

影响因子:2.471

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读