Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes.
Infants born preterm (before 37 weeks' gestation) are at risk of respiratory distress syndrome (RDS) and need for respiratory support due to lung immaturity. One course of prenatal corticosteroids, administered to women at risk of preterm birth, reduces the risk of respiratory morbidity and improves survival of their infants, but these benefits do not extend beyond seven days. Repeat doses of prenatal corticosteroids have been used for women at ongoing risk of preterm birth more than seven days after their first course of corticosteroids, with improvements in respiratory outcomes, but uncertainty remains about any long-term benefits and harms. This is an update of a review last published in 2015.
To assess the effectiveness and safety, using the best available evidence, of a repeat dose(s) of prenatal corticosteroids, given to women who remain at risk of preterm birth seven or more days after an initial course of prenatal corticosteroids with the primary aim of reducing fetal and neonatal mortality and morbidity.
For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP), and reference lists of retrieved studies.
Randomised controlled trials, including cluster-randomised trials, of women who had already received one course of corticosteroids seven or more days previously and were still at risk of preterm birth, randomised to further dose(s) or no repeat doses, with or without placebo. Quasi-randomised trials were excluded. Abstracts were accepted if they met specific criteria. All trials had to meet criteria for trustworthiness, including a search of the Retraction Watch database for retractions or expressions of concern about the trials or their publications.
We used standard Cochrane Pregnancy and Childbirth methods. Two review authors independently selected trials, extracted data, and assessed trial quality and scientific integrity. We chose primary outcomes based on clinical importance as measures of effectiveness and safety, including serious outcomes, for the women and their fetuses/infants, infants in early childhood (age two to less than five years), the infant in mid- to late childhood (age five to less than 18 years) and the infant as an adult. We assessed risk of bias at the outcome level using the RoB 2 tool and assessed certainty of evidence using GRADE.
We included 11 trials (4895 women and 5975 babies). High-certainty evidence from these trials indicated that treatment of women who remain at risk of preterm birth seven or more days after an initial course of prenatal corticosteroids with repeat dose(s) of corticosteroids, compared with no repeat corticosteroid treatment, reduced the risk of their infants experiencing the primary infant outcome of RDS (risk ratio (RR) 0.82, 95% confidence interval (CI) 0.74 to 0.90; 3540 babies; number needed to treat for an additional beneficial outcome (NNTB) 16, 95% CI 11 to 29) and had little or no effect on chronic lung disease (RR 1.00, 95% CI 0.83 to 1.22; 5661 babies). Moderate-certainty evidence indicated that the composite of serious infant outcomes was probably reduced with repeat dose(s) of corticosteroids (RR 0.88, 95% CI 0.80 to 0.97; 9 trials, 5736 babies; NNTB 39, 95% CI 24 to 158), as was severe lung disease (RR 0.83, 95% CI 0.72 to 0.97; NNTB 45, 95% CI 27 to 256; 4955 babies). Moderate-certainty evidence could not exclude benefit or harm for fetal or neonatal or infant death less than one year of age (RR 0.95, 95% CI 0.73 to 1.24; 5849 babies), severe intraventricular haemorrhage (RR 1.13, 95% CI 0.69 to 1.86; 5066 babies) and necrotising enterocolitis (RR 0.84, 95% CI 0.59 to 1.22; 5736 babies). In women, moderate-certainty evidence found little or no effect on the likelihood of a caesarean birth (RR 1.03, 95% CI 0.98 to 1.09; 4266 mothers). Benefit or harm could not be excluded for maternal death (RR 0.32, 95% 0.01 to 7.81; 437 women) and maternal sepsis (RR 1.13, 95% CI 0.93 to 1.39; 4666 mothers). The evidence was unclear for risk of adverse effects and discontinuation of therapy due to maternal adverse effects. No trials reported breastfeeding status at hospital discharge or risk of admission to the intensive care unit. At early childhood follow-up, moderate- to high-certainty evidence identified little or no effect of exposure to repeat prenatal corticosteroids compared with no repeat corticosteroids for primary outcomes relating to neurodevelopment (neurodevelopmental impairment: RR 0.97, 95% CI 0.85 to 1.10; 3616 children), survival without neurodevelopmental impairment (RR 1.01, 95% CI 0.98 to 1.04; 3845 children) and survival without major neurodevelopmental impairment (RR 1.02, 95% CI 0.98 to 1.05; 1816 children). An increase or decrease in the risk of death since randomisation could not be excluded (RR 1.06, 95% CI 0.81 to 1.40; 5 trials, 4565 babies randomised). At mid-childhood follow-up, moderate-certainty evidence identified little or no effect of exposure to repeat prenatal corticosteroids compared with no repeat corticosteroids on survival free of neurocognitive impairment (RR 1.01, 95% CI 0.95 to 1.08; 963 children) or survival free of major neurocognitive impairment (RR 1.00, 95% CI 0.97 to 1.04; 2682 children). Benefit or harm could not be excluded for death since randomisation (RR 0.93, 95% CI 0.69 to 1.26; 2874 babies randomised) and any neurocognitive impairment (RR 0.96, 95% CI 0.72 to 1.29; 897 children). No trials reported data for follow-up into adolescence or adulthood. Risk of bias across outcomes was generally low although there were some concerns of bias. For childhood follow-up, most outcomes had some concerns of risk of bias due to missing data from loss to follow-up.
The short-term benefits for babies included less respiratory distress and fewer serious health problems in the first few weeks after birth with repeat dose(s) of prenatal corticosteroids for women still at risk of preterm birth seven days or more after an initial course. The current available evidence reassuringly shows no significant harm for the women or child in early and mid-childhood, although no benefit. Further research is needed on the long-term benefits and risks for the baby into adulthood.
Walters A
,McKinlay C
,Middleton P
,Harding JE
,Crowther CA
... -
《Cochrane Database of Systematic Reviews》
Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth.
Despite the widespread use of antenatal corticosteroids to prevent respiratory distress syndrome (RDS) in preterm infants, there is currently no consensus as to the type of corticosteroid to use, dose, frequency, timing of use or the route of administration. OBJECTIVES: To assess the effects on fetal and neonatal morbidity and mortality, on maternal morbidity and mortality, and on the child and adult in later life, of administering different types of corticosteroids (dexamethasone or betamethasone), or different corticosteroid dose regimens, including timing, frequency and mode of administration.
For this update, we searched Cochrane Pregnancy and Childbirth Group's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (9 May 2022) and reference lists of retrieved studies.
We included all identified published and unpublished randomised controlled trials or quasi-randomised controlled trials comparing any two corticosteroids (dexamethasone or betamethasone or any other corticosteroid that can cross the placenta), comparing different dose regimens (including frequency and timing of administration) in women at risk of preterm birth. We planned to exclude cross-over trials and cluster-randomised trials. We planned to include studies published as abstracts only along with studies published as full-text manuscripts.
At least two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. We assessed the certainty of the evidence using GRADE.
We included 11 trials (2494 women and 2762 infants) in this update, all of which recruited women who were at increased risk of preterm birth or had a medical indication for preterm birth. All trials were conducted in high-income countries. Dexamethasone versus betamethasone Nine trials (2096 women and 2319 infants) compared dexamethasone versus betamethasone. All trials administered both drugs intramuscularly, and the total dose in the course was consistent (22.8 mg or 24 mg), but the regimen varied. We assessed one new study to have no serious risk of bias concerns for most outcomes, but other studies were at moderate (six trials) or high (two trials) risk of bias due to selection, detection and attrition bias. Our GRADE assessments ranged between high- and low-certainty, with downgrades due to risk of bias and imprecision. Maternal outcomes The only maternal primary outcome reported was chorioamnionitis (death and puerperal sepsis were not reported). Although the rate of chorioamnionitis was lower with dexamethasone, we did not find conclusive evidence of a difference between the two drugs (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.48 to 1.06; 1 trial, 1346 women; moderate-certainty evidence). The proportion of women experiencing maternal adverse effects of therapy was lower with dexamethasone; however, there was not conclusive evidence of a difference between interventions (RR 0.63, 95% CI 0.35 to 1.13; 2 trials, 1705 women; moderate-certainty evidence). Infant outcomes We are unsure whether the choice of drug makes a difference to the risk of any known death after randomisation, because the 95% CI was compatible with both appreciable benefit and harm with dexamethasone (RR 1.03, 95% CI 0.66 to 1.63; 5 trials, 2105 infants; moderate-certainty evidence). The choice of drug may make little or no difference to the risk of RDS (RR 1.06, 95% CI 0.91 to 1.22; 5 trials, 2105 infants; high-certainty evidence). While there may be little or no difference in the risk of intraventricular haemorrhage (IVH), there was substantial unexplained statistical heterogeneity in this result (average (a) RR 0.71, 95% CI 0.28 to 1.81; 4 trials, 1902 infants; I² = 62%; low-certainty evidence). We found no evidence of a difference between the two drugs for chronic lung disease (RR 0.92, 95% CI 0.64 to 1.34; 1 trial, 1509 infants; moderate-certainty evidence), and we are unsure of the effects on necrotising enterocolitis, because there were few events in the studies reporting this outcome (RR 5.08, 95% CI 0.25 to 105.15; 2 studies, 441 infants; low-certainty evidence). Longer-term child outcomes Only one trial consistently followed up children longer term, reporting at two years' adjusted age. There is probably little or no difference between dexamethasone and betamethasone in the risk of neurodevelopmental disability at follow-up (RR 1.02, 95% CI 0.85 to 1.22; 2 trials, 1151 infants; moderate-certainty evidence). It is unclear whether the choice of drug makes a difference to the risk of visual impairment (RR 0.33, 95% CI 0.01 to 8.15; 1 trial, 1227 children; low-certainty evidence). There may be little or no difference between the drugs for hearing impairment (RR 1.16, 95% CI 0.63 to 2.16; 1 trial, 1227 children; moderate-certainty evidence), motor developmental delay (RR 0.89, 95% CI 0.66 to 1.20; 1 trial, 1166 children; moderate-certainty evidence) or intellectual impairment (RR 0.97, 95% CI 0.79 to 1.20; 1 trial, 1161 children; moderate-certainty evidence). However, the effect estimate for cerebral palsy is compatible with both an important increase in risk with dexamethasone, and no difference between interventions (RR 2.50, 95% CI 0.97 to 6.39; 1 trial, 1223 children; low-certainty evidence). No trials followed the children beyond early childhood. Comparisons of different preparations and regimens of corticosteroids We found three studies that included a comparison of a different regimen or preparation of either dexamethasone or betamethasone (oral dexamethasone 32 mg versus intramuscular dexamethasone 24 mg; betamethasone acetate plus phosphate versus betamethasone phosphate; 12-hourly betamethasone versus 24-hourly betamethasone). The certainty of the evidence for the main outcomes from all three studies was very low, due to small sample size and risk of bias. Therefore, we were limited in our ability to draw conclusions from any of these studies.
Overall, it remains unclear whether there are important differences between dexamethasone and betamethasone, or between one regimen and another. Most trials compared dexamethasone versus betamethasone. While for most infant and early childhood outcomes there may be no difference between these drugs, for several important outcomes for the mother, infant and child the evidence was inconclusive and did not rule out significant benefits or harms. The evidence on different antenatal corticosteroid regimens was sparse, and does not support the use of one particular corticosteroid regimen over another.
Williams MJ
,Ramson JA
,Brownfoot FC
《Cochrane Database of Systematic Reviews》
Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth.
Respiratory morbidity including respiratory distress syndrome (RDS) is a serious complication of preterm birth and the primary cause of early neonatal mortality and disability. Despite early evidence indicating a beneficial effect of antenatal corticosteroids on fetal lung maturation and widespread recommendations to use this treatment in women at risk of preterm delivery, some uncertainty remains about their effectiveness particularly with regard to their use in lower-resource settings, different gestational ages and high-risk obstetric groups such as women with hypertension or multiple pregnancies. This updated review (which supersedes an earlier review Crowley 1996) was first published in 2006 and subsequently updated in 2017.
To assess the effects of administering a course of corticosteroids to women prior to anticipated preterm birth (before 37 weeks of pregnancy) on fetal and neonatal morbidity and mortality, maternal mortality and morbidity, and on the child in later life.
We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (3 September 2020), ClinicalTrials.gov, the databases that contribute to the WHO International Clinical Trials Registry Platform (ICTRP) (3 September 2020), and reference lists of the retrieved studies.
We considered all randomised controlled comparisons of antenatal corticosteroid administration with placebo, or with no treatment, given to women with a singleton or multiple pregnancy, prior to anticipated preterm delivery (elective, or following rupture of membranes or spontaneous labour), regardless of other co-morbidity, for inclusion in this review.
We used standard Cochrane Pregnancy and Childbirth methods for data collection and analysis. Two review authors independently assessed trials for inclusion, assessed risk of bias, evaluated trustworthiness based on predefined criteria developed by Cochrane Pregnancy and Childbirth, extracted data and checked them for accuracy, and assessed the certainty of the evidence using the GRADE approach. Primary outcomes included perinatal death, neonatal death, RDS, intraventricular haemorrhage (IVH), birthweight, developmental delay in childhood and maternal death.
We included 27 studies (11,272 randomised women and 11,925 neonates) from 20 countries. Ten trials (4422 randomised women) took place in lower- or middle-resource settings. We removed six trials from the analysis that were included in the previous version of the review; this review only includes trials that meet our pre-defined trustworthiness criteria. In 19 trials the women received a single course of steroids. In the remaining eight trials repeated courses may have been prescribed. Fifteen trials were judged to be at low risk of bias, two had a high risk of bias in two or more domains and we ten trials had a high risk of bias due to lack of blinding (placebo was not used in the control arm. Overall, the certainty of evidence was moderate to high, but it was downgraded for IVH due to indirectness; for developmental delay due to risk of bias and for maternal adverse outcomes (death, chorioamnionitis and endometritis) due to imprecision. Neonatal/child outcomes Antenatal corticosteroids reduce the risk of: - perinatal death (risk ratio (RR) 0.85, 95% confidence interval (CI) 0.77 to 0.93; 9833 infants; 14 studies; high-certainty evidence; 2.3% fewer, 95% CI 1.1% to 3.6% fewer), - neonatal death (RR 0.78, 95% CI 0.70 to 0.87; 10,609 infants; 22 studies; high-certainty evidence; 2.6% fewer, 95% CI 1.5% to 3.6% fewer), - respiratory distress syndrome (RR 0.71, 95% CI 0.65 to 0.78; 11,183 infants; studies = 26; high-certainty evidence; 4.3% fewer, 95% CI 3.2% to 5.2% fewer). Antenatal corticosteroids probably reduce the risk of IVH (RR 0.58, 95% CI 0.45 to 0.75; 8475 infants; 12 studies; moderate-certainty evidence; 1.4% fewer, 95% CI 0.8% to1.8% fewer), and probably have little to no effect on birthweight (mean difference (MD) -14.02 g, 95% CI -33.79 to 5.76; 9551 infants; 19 studies; high-certainty evidence). Antenatal corticosteroids probably lead to a reduction in developmental delay in childhood (RR 0.51, 95% CI 0.27 to 0.97; 600 children; 3 studies; moderate-certainty evidence; 3.8% fewer, 95% CI 0.2% to 5.7% fewer). Maternal outcomes Antenatal corticosteroids probably result in little to no difference in maternal death (RR 1.19, 95% CI 0.36 to 3.89; 6244 women; 6 studies; moderate-certainty evidence; 0.0% fewer, 95% CI 0.1% fewer to 0.5% more), chorioamnionitis (RR 0.86, 95% CI 0.69 to 1.08; 8374 women; 15 studies; moderate-certainty evidence; 0.5% fewer, 95% CI 1.1% fewer to 0.3% more), and endometritis (RR 1.14, 95% CI 0.82 to 1.58; 6764 women; 10 studies; moderate-certainty; 0.3% more, 95% CI 0.3% fewer to 1.1% more) The wide 95% CIs in all of these outcomes include possible benefit and possible harm.
Evidence from this updated review supports the continued use of a single course of antenatal corticosteroids to accelerate fetal lung maturation in women at risk of preterm birth. Treatment with antenatal corticosteroids reduces the risk of perinatal death, neonatal death and RDS and probably reduces the risk of IVH. This evidence is robust, regardless of resource setting (high, middle or low). Further research should focus on variations in the treatment regimen, effectiveness of the intervention in specific understudied subgroups such as multiple pregnancies and other high-risk obstetric groups, and the risks and benefits in the very early or very late preterm periods. Additionally, outcomes from existing trials with follow-up into childhood and adulthood are needed in order to investigate any longer-term effects of antenatal corticosteroids. We encourage authors of previous studies to provide further information which may answer any remaining questions about the use of antenatal corticosteroids without the need for further randomised controlled trials. Individual patient data meta-analyses from published trials are likely to provide answers for most of the remaining clinical uncertainties.
McGoldrick E
,Stewart F
,Parker R
,Dalziel SR
... -
《Cochrane Database of Systematic Reviews》
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
Description of the condition Malaria, an infectious disease transmitted by the bite of female mosquitoes from several Anopheles species, occurs in 87 countries with ongoing transmission (WHO 2020). The World Health Organization (WHO) estimated that, in 2019, approximately 229 million cases of malaria occurred worldwide, with 94% occurring in the WHO's African region (WHO 2020). Of these malaria cases, an estimated 409,000 deaths occurred globally, with 67% occurring in children under five years of age (WHO 2020). Malaria also negatively impacts the health of women during pregnancy, childbirth, and the postnatal period (WHO 2020). Sulfadoxine/pyrimethamine (SP), an antifolate antimalarial, has been widely used across sub-Saharan Africa as the first-line treatment for uncomplicated malaria since it was first introduced in Malawi in 1993 (Filler 2006). Due to increasing resistance to SP, in 2000 the WHO recommended that one of several artemisinin-based combination therapies (ACTs) be used instead of SP for the treatment of uncomplicated malaria caused by Plasmodium falciparum (Global Partnership to Roll Back Malaria 2001). However, despite these recommendations, SP continues to be advised for intermittent preventive treatment in pregnancy (IPTp) and intermittent preventive treatment in infants (IPTi), whether the person has malaria or not (WHO 2013). Description of the intervention Folate (vitamin B9) includes both naturally occurring folates and folic acid, the fully oxidized monoglutamic form of the vitamin, used in dietary supplements and fortified food. Folate deficiency (e.g. red blood cell (RBC) folate concentrations of less than 305 nanomoles per litre (nmol/L); serum or plasma concentrations of less than 7 nmol/L) is common in many parts of the world and often presents as megaloblastic anaemia, resulting from inadequate intake, increased requirements, reduced absorption, or abnormal metabolism of folate (Bailey 2015; WHO 2015a). Pregnant women have greater folate requirements; inadequate folate intake (evidenced by RBC folate concentrations of less than 400 nanograms per millilitre (ng/mL), or 906 nmol/L) prior to and during the first month of pregnancy increases the risk of neural tube defects, preterm delivery, low birthweight, and fetal growth restriction (Bourassa 2019). The WHO recommends that all women who are trying to conceive consume 400 micrograms (µg) of folic acid daily from the time they begin trying to conceive through to 12 weeks of gestation (WHO 2017). In 2015, the WHO added the dosage of 0.4 mg of folic acid to the essential drug list (WHO 2015c). Alongside daily oral iron (30 mg to 60 mg elemental iron), folic acid supplementation is recommended for pregnant women to prevent neural tube defects, maternal anaemia, puerperal sepsis, low birthweight, and preterm birth in settings where anaemia in pregnant women is a severe public health problem (i.e. where at least 40% of pregnant women have a blood haemoglobin (Hb) concentration of less than 110 g/L). How the intervention might work Potential interactions between folate status and malaria infection The malaria parasite requires folate for survival and growth; this has led to the hypothesis that folate status may influence malaria risk and severity. In rhesus monkeys, folate deficiency has been found to be protective against Plasmodium cynomolgi malaria infection, compared to folate-replete animals (Metz 2007). Alternatively, malaria may induce or exacerbate folate deficiency due to increased folate utilization from haemolysis and fever. Further, folate status measured via RBC folate is not an appropriate biomarker of folate status in malaria-infected individuals since RBC folate values in these individuals are indicative of both the person's stores and the parasite's folate synthesis. A study in Nigeria found that children with malaria infection had significantly higher RBC folate concentrations compared to children without malaria infection, but plasma folate levels were similar (Bradley-Moore 1985). Why it is important to do this review The malaria parasite needs folate for survival and growth in humans. For individuals, adequate folate levels are critical for health and well-being, and for the prevention of anaemia and neural tube defects. Many countries rely on folic acid supplementation to ensure adequate folate status in at-risk populations. Different formulations for folic acid supplements are available in many international settings, with dosages ranging from 400 µg to 5 mg. Evaluating folic acid dosage levels used in supplementation efforts may increase public health understanding of its potential impacts on malaria risk and severity and on treatment failures. Examining folic acid interactions with antifolate antimalarial medications and with malaria disease progression may help countries in malaria-endemic areas determine what are the most appropriate lower dose folic acid formulations for at-risk populations. The WHO has highlighted the limited evidence available and has indicated the need for further research on biomarkers of folate status, particularly interactions between RBC folate concentrations and tuberculosis, human immunodeficiency virus (HIV), and antifolate antimalarial drugs (WHO 2015b). An earlier Cochrane Review assessed the effects and safety of iron supplementation, with or without folic acid, in children living in hyperendemic or holoendemic malaria areas; it demonstrated that iron supplementation did not increase the risk of malaria, as indicated by fever and the presence of parasites in the blood (Neuberger 2016). Further, this review stated that folic acid may interfere with the efficacy of SP; however, the efficacy and safety of folic acid supplementation on these outcomes has not been established. This review will provide evidence on the effectiveness of daily folic acid supplementation in healthy and malaria-infected individuals living in malaria-endemic areas. Additionally, it will contribute to achieving both the WHO Global Technical Strategy for Malaria 2016-2030 (WHO 2015d), and United Nations Sustainable Development Goal 3 (to ensure healthy lives and to promote well-being for all of all ages) (United Nations 2021), and evaluating whether the potential effects of folic acid supplementation, at different doses (e.g. 0.4 mg, 1 mg, 5 mg daily), interferes with the effect of drugs used for prevention or treatment of malaria.
To examine the effects of folic acid supplementation, at various doses, on malaria susceptibility (risk of infection) and severity among people living in areas with various degrees of malaria endemicity. We will examine the interaction between folic acid supplements and antifolate antimalarial drugs. Specifically, we will aim to answer the following. Among uninfected people living in malaria endemic areas, who are taking or not taking antifolate antimalarials for malaria prophylaxis, does taking a folic acid-containing supplement increase susceptibility to or severity of malaria infection? Among people with malaria infection who are being treated with antifolate antimalarials, does folic acid supplementation increase the risk of treatment failure?
Criteria for considering studies for this review Types of studies Inclusion criteria Randomized controlled trials (RCTs) Quasi-RCTs with randomization at the individual or cluster level conducted in malaria-endemic areas (areas with ongoing, local malaria transmission, including areas approaching elimination, as listed in the World Malaria Report 2020) (WHO 2020) Exclusion criteria Ecological studies Observational studies In vivo/in vitro studies Economic studies Systematic literature reviews and meta-analyses (relevant systematic literature reviews and meta-analyses will be excluded but flagged for grey literature screening) Types of participants Inclusion criteria Individuals of any age or gender, living in a malaria endemic area, who are taking antifolate antimalarial medications (including but not limited to sulfadoxine/pyrimethamine (SP), pyrimethamine-dapsone, pyrimethamine, chloroquine and proguanil, cotrimoxazole) for the prevention or treatment of malaria (studies will be included if more than 70% of the participants live in malaria-endemic regions) Studies assessing participants with or without anaemia and with or without malaria parasitaemia at baseline will be included Exclusion criteria Individuals not taking antifolate antimalarial medications for prevention or treatment of malaria Individuals living in non-malaria endemic areas Types of interventions Inclusion criteria Folic acid supplementation Form: in tablet, capsule, dispersible tablet at any dose, during administration, or periodically Timing: during, before, or after (within a period of four to six weeks) administration of antifolate antimalarials Iron-folic acid supplementation Folic acid supplementation in combination with co-interventions that are identical between the intervention and control groups. Co-interventions include: anthelminthic treatment; multivitamin or multiple micronutrient supplementation; 5-methyltetrahydrofolate supplementation. Exclusion criteria Folate through folate-fortified water Folic acid administered through large-scale fortification of rice, wheat, or maize Comparators Placebo No treatment No folic acid/different doses of folic acid Iron Types of outcome measures Primary outcomes Uncomplicated malaria (defined as a history of fever with parasitological confirmation; acceptable parasitological confirmation will include rapid diagnostic tests (RDTs), malaria smears, or nucleic acid detection (i.e. polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), etc.)) (WHO 2010). This outcome is relevant for patients without malaria, given antifolate antimalarials for malaria prophylaxis. Severe malaria (defined as any case with cerebral malaria or acute P. falciparum malaria, with signs of severity or evidence of vital organ dysfunction, or both) (WHO 2010). This outcome is relevant for patients without malaria, given antifolate antimalarials for malaria prophylaxis. Parasite clearance (any Plasmodium species), defined as the time it takes for a patient who tests positive at enrolment and is treated to become smear-negative or PCR negative. This outcome is relevant for patients with malaria, treated with antifolate antimalarials. Treatment failure (defined as the inability to clear malaria parasitaemia or prevent recrudescence after administration of antimalarial medicine, regardless of whether clinical symptoms are resolved) (WHO 2019). This outcome is relevant for patients with malaria, treated with antifolate antimalarials. Secondary outcomes Duration of parasitaemia Parasite density Haemoglobin (Hb) concentrations (g/L) Anaemia: severe anaemia (defined as Hb less than 70 g/L in pregnant women and children aged six to 59 months; and Hb less than 80 g/L in other populations); moderate anaemia (defined as Hb less than 100 g/L in pregnant women and children aged six to 59 months; and less than 110 g/L in others) Death from any cause Among pregnant women: stillbirth (at less than 28 weeks gestation); low birthweight (less than 2500 g); active placental malaria (defined as Plasmodium detected in placental blood by smear or PCR, or by Plasmodium detected on impression smear or placental histology). Search methods for identification of studies A search will be conducted to identify completed and ongoing studies, without date or language restrictions. Electronic searches A search strategy will be designed to include the appropriate subject headings and text word terms related to each intervention of interest and study design of interest (see Appendix 1). Searches will be broken down by these two criteria (intervention of interest and study design of interest) to allow for ease of prioritization, if necessary. The study design filters recommended by the Scottish Intercollegiate Guidelines Network (SIGN), and those designed by Cochrane for identifying clinical trials for MEDLINE and Embase, will be used (SIGN 2020). There will be no date or language restrictions. Non-English articles identified for inclusion will be translated into English. If translations are not possible, advice will be requested from the Cochrane Infectious Diseases Group and the record will be stored in the "Awaiting assessment" section of the review until a translation is available. The following electronic databases will be searched for primary studies. Cochrane Central Register of Controlled Trials. Cumulative Index to Nursing and Allied Health Literature (CINAHL). Embase. MEDLINE. Scopus. Web of Science (both the Social Science Citation Index and the Science Citation Index). We will conduct manual searches of ClinicalTrials.gov, the International Clinical Trials Registry Platform (ICTRP), and the United Nations Children's Fund (UNICEF) Evaluation and Research Database (ERD), in order to identify relevant ongoing or planned trials, abstracts, and full-text reports of evaluations, studies, and surveys related to programmes on folic acid supplementation in malaria-endemic areas. Additionally, manual searches of grey literature to identify RCTs that have not yet been published but are potentially eligible for inclusion will be conducted in the following sources. Global Index Medicus (GIM). African Index Medicus (AIM). Index Medicus for the Eastern Mediterranean Region (IMEMR). Latin American & Caribbean Health Sciences Literature (LILACS). Pan American Health Organization (PAHO). Western Pacific Region Index Medicus (WPRO). Index Medicus for the South-East Asian Region (IMSEAR). The Spanish Bibliographic Index in Health Sciences (IBECS) (ibecs.isciii.es/). Indian Journal of Medical Research (IJMR) (journals.lww.com/ijmr/pages/default.aspx). Native Health Database (nativehealthdatabase.net/). Scielo (www.scielo.br/). Searching other resources Handsearches of the five journals with the highest number of included studies in the last 12 months will be conducted to capture any relevant articles that may not have been indexed in the databases at the time of the search. We will contact the authors of included studies and will check reference lists of included papers for the identification of additional records. For assistance in identifying ongoing or unpublished studies, we will contact the Division of Nutrition, Physical Activity, and Obesity (DNPAO) and the Division of Parasitic Diseases and Malaria (DPDM) of the CDC, the United Nations World Food Programme (WFP), Nutrition International (NI), Global Alliance for Improved Nutrition (GAIN), and Hellen Keller International (HKI). Data collection and analysis Selection of studies Two review authors will independently screen the titles and abstracts of articles retrieved by each search to assess eligibility, as determined by the inclusion and exclusion criteria. Studies deemed eligible for inclusion by both review authors in the abstract screening phase will advance to the full-text screening phase, and full-text copies of all eligible papers will be retrieved. If full articles cannot be obtained, we will attempt to contact the authors to obtain further details of the studies. If such information is not obtained, we will classify the study as "awaiting assessment" until further information is published or made available to us. The same two review authors will independently assess the eligibility of full-text articles for inclusion in the systematic review. If any discrepancies occur between the studies selected by the two review authors, a third review author will provide arbitration. Each trial will be scrutinized to identify multiple publications from the same data set, and the justification for excluded trials will be documented. A PRISMA flow diagram of the study selection process will be presented to provide information on the number of records identified in the literature searches, the number of studies included and excluded, and the reasons for exclusion (Moher 2009). The list of excluded studies, along with their reasons for exclusion at the full-text screening phase, will also be created. Data extraction and management Two review authors will independently extract data for the final list of included studies using a standardized data specification form. Discrepancies observed between the data extracted by the two authors will be resolved by involving a third review author and reaching a consensus. Information will be extracted on study design components, baseline participant characteristics, intervention characteristics, and outcomes. For individually randomized trials, we will record the number of participants experiencing the event and the number analyzed in each treatment group or the effect estimate reported (e.g. risk ratio (RR)) for dichotomous outcome measures. For count data, we will record the number of events and the number of person-months of follow-up in each group. If the number of person-months is not reported, the product of the duration of follow-up and the number of children evaluated will be used to estimate this figure. We will calculate the rate ratio and standard error (SE) for each study. Zero events will be replaced by 0.5. We will extract both adjusted and unadjusted covariate incidence rate ratios if they are reported in the original studies. For continuous data, we will extract means (arithmetic or geometric) and a measure of variance (standard deviation (SD), SE, or confidence interval (CI)), percentage or mean change from baseline, and the numbers analyzed in each group. SDs will be computed from SEs or 95% CIs, assuming a normal distribution of the values. Haemoglobin values in g/dL will be calculated by multiplying haematocrit or packed cell volume values by 0.34, and studies reporting haemoglobin values in g/dL will be converted to g/L. In cluster-randomized trials, we will record the unit of randomization (e.g. household, compound, sector, or village), the number of clusters in the trial, and the average cluster size. The statistical methods used to analyze the trials will be documented, along with details describing whether these methods adjusted for clustering or other covariates. We plan to extract estimates of the intra-cluster correlation coefficient (ICC) for each outcome. Where results are adjusted for clustering, we will extract the treatment effect estimate and the SD or CI. If the results are not adjusted for clustering, we will extract the data reported. Assessment of risk of bias in included studies Two review authors (KSC, LFY) will independently assess the risk of bias for each included trial using the Cochrane 'Risk of bias 2' tool (RoB 2) for randomized studies (Sterne 2019). Judgements about the risk of bias of included studies will be made according to the recommendations outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2021). Disagreements will be resolved by discussion, or by involving a third review author. The interest of our review will be to assess the effect of assignment to the interventions at baseline. We will evaluate each primary outcome using the RoB2 tool. The five domains of the Cochrane RoB2 tool include the following. Bias arising from the randomization process. Bias due to deviations from intended interventions. Bias due to missing outcome data. Bias in measurement of the outcome. Bias in selection of the reported result. Each domain of the RoB2 tool comprises the following. A series of 'signalling' questions. A judgement about the risk of bias for the domain, facilitated by an algorithm that maps responses to the signalling questions to a proposed judgement. Free-text boxes to justify responses to the signalling questions and 'Risk of bias' judgements. An option to predict (and explain) the likely direction of bias. Responses to signalling questions elicit information relevant to an assessment of the risk of bias. These response options are as follows. Yes (may indicate either low or high risk of bias, depending on the most natural way to ask the question). Probably yes. Probably no. No. No information (may indicate no evidence of that problem or an absence of information leading to concerns about there being a problem). Based on the answer to the signalling question, a 'Risk of bias' judgement is assigned to each domain. These judgements include one of the following. High risk of bias Low risk of bias Some concerns To generate the risk of bias judgement for each domain in the randomized studies, we will use the Excel template, available at www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2. This file will be stored on a scientific data website, available to readers. Risk of bias in cluster randomized controlled trials For the cluster randomized trials, we will be using the RoB2 tool to analyze the five standard domains listed above along with Domain 1b (bias arising from the timing of identification or recruitment of participants) and its related signalling questions. To generate the risk of bias judgement for each domain in the cluster RCTs, we will use the Excel template available at https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/rob-2-for-cluster-randomized-trials. This file will be stored on a scientific data website, available to readers. Risk of bias in cross-over randomized controlled trials For cross-over randomized trials, we will be using the RoB2 tool to analyze the five standard domains listed above along with Domain 2 (bias due to deviations from intended interventions), and Domain 3 (bias due to missing outcome data), and their respective signalling questions. To generate the risk of bias judgement for each domain in the cross-over RCTs, we will use the Excel template, available at https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/rob-2-for-crossover-trials, for each risk of bias judgement of cross-over randomized studies. This file will be stored on a scientific data website, available to readers. Overall risk of bias The overall 'Risk of bias' judgement for each specific trial being assessed will be based on each domain-level judgement. The overall judgements include the following. Low risk of bias (the trial is judged to be at low risk of bias for all domains). Some concerns (the trial is judged to raise some concerns in at least one domain but is not judged to be at high risk of bias for any domain). High risk of bias (the trial is judged to be at high risk of bias in at least one domain, or is judged to have some concerns for multiple domains in a way that substantially lowers confidence in the result). The 'risk of bias' assessments will inform our GRADE evaluations of the certainty of evidence for our primary outcomes presented in the 'Summary of findings' tables and will also be used to inform the sensitivity analyses; (see Sensitivity analysis). If there is insufficient information in study reports to enable an assessment of the risk of bias, studies will be classified as "awaiting assessment" until further information is published or made available to us. Measures of treatment effect Dichotomous data For dichotomous data, we will present proportions and, for two-group comparisons, results as average RR or odds ratio (OR) with 95% CIs. Ordered categorical data Continuous data We will report results for continuous outcomes as the mean difference (MD) with 95% CIs, if outcomes are measured in the same way between trials. Where some studies have reported endpoint data and others have reported change-from-baseline data (with errors), we will combine these in the meta-analysis, if the outcomes were reported using the same scale. We will use the standardized mean difference (SMD), with 95% CIs, to combine trials that measured the same outcome but used different methods. If we do not find three or more studies for a pooled analysis, we will summarize the results in a narrative form. Unit of analysis issues Cluster-randomized trials We plan to combine results from both cluster-randomized and individually randomized studies, providing there is little heterogeneity between the studies. If the authors of cluster-randomized trials conducted their analyses at a different level from that of allocation, and they have not appropriately accounted for the cluster design in their analyses, we will calculate the trials' effective sample sizes to account for the effect of clustering in data. When one or more cluster-RCT reports RRs adjusted for clustering, we will compute cluster-adjusted SEs for the other trials. When none of the cluster-RCTs provide cluster-adjusted RRs, we will adjust the sample size for clustering. We will divide, by the estimated design effects (DE), the number of events and number evaluated for dichotomous outcomes and the number evaluated for continuous outcomes, where DE = 1 + ((average cluster size 1) * ICC). The derivation of the estimated ICCs and DEs will be reported. We will utilize the intra-cluster correlation coefficient (ICC), derived from the trial (if available), or from another source (e.g., using the ICCs derived from other, similar trials) and then calculate the design effect with the formula provided in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2021). If this approach is used, we will report it and undertake sensitivity analysis to investigate the effect of variations in ICC. Studies with more than two treatment groups If we identify studies with more than two intervention groups (multi-arm studies), where possible we will combine groups to create a single pair-wise comparison or use the methods set out in the Cochrane Handbook to avoid double counting study participants (Higgins 2021). For the subgroup analyses, when the control group was shared by two or more study arms, we will divide the control group (events and total population) over the number of relevant subgroups to avoid double counting the participants. Trials with several study arms can be included more than once for different comparisons. Cross-over trials From cross-over trials, we will consider the first period of measurement only and will analyze the results together with parallel-group studies. Multiple outcome events In several outcomes, a participant might experience more than one outcome event during the trial period. For all outcomes, we will extract the number of participants with at least one event. Dealing with missing data We will contact the trial authors if the available data are unclear, missing, or reported in a format that is different from the format needed. We aim to perform a 'per protocol' or 'as observed' analysis; otherwise, we will perform a complete case analysis. This means that for treatment failure, we will base the analyses on the participants who received treatment and the number of participants for which there was an inability to clear malarial parasitaemia or prevent recrudescence after administration of an antimalarial medicine reported in the studies. Assessment of heterogeneity Heterogeneity in the results of the trials will be assessed by visually examining the forest plot to detect non-overlapping CIs, using the Chi2 test of heterogeneity (where a P value of less than 0.1 indicates statistical significance) and the I2 statistic of inconsistency (with a value of greater than 50% denoting moderate levels of heterogeneity). When statistical heterogeneity is present, we will investigate the reasons for it, using subgroup analysis. Assessment of reporting biases We will construct a funnel plot to assess the effect of small studies for the main outcome (when including more than 10 trials). Data synthesis The primary analysis will include all eligible studies that provide data regardless of the overall risk of bias as assessed by the RoB2 tool. Analyses will be conducted using Review Manager 5.4 (Review Manager 2020). Cluster-RCTs will be included in the main analysis after adjustment for clustering (see the previous section on cluster-RCTs). The meta-analysis will be performed using the Mantel-Haenszel random-effects model or the generic inverse variance method (when adjustment for clustering is performed by adjusting SEs), as appropriate. Subgroup analysis and investigation of heterogeneity The overall risk of bias will not be used as the basis in conducting our subgroup analyses. However, where data are available, we plan to conduct the following subgroup analyses, independent of heterogeneity. Dose of folic acid supplementation: higher doses (4 mg or more, daily) versus lower doses (less than 4 mg, daily). Moderate-severe anaemia at baseline (mean haemoglobin of participants in a trial at baseline below 100 g/L for pregnant women and children aged six to 59 months, and below 110 g/L for other populations) versus normal at baseline (mean haemoglobin above 100 g/L for pregnant women and children aged six to 59 months, and above 110 g/L for other populations). Antimalarial drug resistance to parasite: known resistance versus no resistance versus unknown/mixed/unreported parasite resistance. Folate status at baseline: Deficient (e.g. RBC folate concentration of less than 305 nmol/L, or serum folate concentration of less than 7nmol/L) and Insufficient (e.g. RBC folate concentration from 305 to less than 906 nmol/L, or serum folate concentration from 7 to less than 25 nmol/L) versus Sufficient (e.g. RBC folate concentration above 906 nmol/L, or serum folate concentration above 25 nmol/L). Presence of anaemia at baseline: yes versus no. Mandatory fortification status: yes, versus no (voluntary or none). We will only use the primary outcomes in any subgroup analyses, and we will limit subgroup analyses to those outcomes for which three or more trials contributed data. Comparisons between subgroups will be performed using Review Manager 5.4 (Review Manager 2020). Sensitivity analysis We will perform a sensitivity analysis, using the risk of bias as a variable to explore the robustness of the findings in our primary outcomes. We will verify the behaviour of our estimators by adding and removing studies with a high risk of bias overall from the analysis. That is, studies with a low risk of bias versus studies with a high risk of bias. Summary of findings and assessment of the certainty of the evidence For the assessment across studies, we will use the GRADE approach, as outlined in (Schünemann 2021). We will use the five GRADE considerations (study limitations based on RoB2 judgements, consistency of effect, imprecision, indirectness, and publication bias) to assess the certainty of the body of evidence as it relates to the studies which contribute data to the meta-analyses for the primary outcomes. The GRADEpro Guideline Development Tool (GRADEpro) will be used to import data from Review Manager 5.4 (Review Manager 2020) to create 'Summary of Findings' tables. The primary outcomes for the main comparison will be listed with estimates of relative effects, along with the number of participants and studies contributing data for those outcomes. These tables will provide outcome-specific information concerning the overall certainty of evidence from studies included in the comparison, the magnitude of the effect of the interventions examined, and the sum of available data on the outcomes we considered. We will include only primary outcomes in the summary of findings tables. For each individual outcome, two review authors (KSC, LFY) will independently assess the certainty of the evidence using the GRADE approach (Balshem 2011). For assessments of the overall certainty of evidence for each outcome that includes pooled data from included trials, we will downgrade the evidence from 'high certainty' by one level for serious (or by two for very serious) study limitations (risk of bias, indirectness of evidence, serious inconsistency, imprecision of effect estimates, or potential publication bias).
Crider K
,Williams J
,Qi YP
,Gutman J
,Yeung L
,Mai C
,Finkelstain J
,Mehta S
,Pons-Duran C
,Menéndez C
,Moraleda C
,Rogers L
,Daniels K
,Green P
... -
《Cochrane Database of Systematic Reviews》
Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus.
Magnesium sulphate is a common therapy in perinatal care. Its benefits when given to women at risk of preterm birth for fetal neuroprotection (prevention of cerebral palsy for children) were shown in a 2009 Cochrane review. Internationally, use of magnesium sulphate for preterm cerebral palsy prevention is now recommended practice. As new randomised controlled trials (RCTs) and longer-term follow-up of prior RCTs have since been conducted, this review updates the previously published version.
To assess the effectiveness and safety of magnesium sulphate as a fetal neuroprotective agent when given to women considered to be at risk of preterm birth.
We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) on 17 March 2023, as well as reference lists of retrieved studies.
We included RCTs and cluster-RCTs of women at risk of preterm birth that assessed prenatal magnesium sulphate for fetal neuroprotection compared with placebo or no treatment. All methods of administration (intravenous, intramuscular, and oral) were eligible. We did not include studies where magnesium sulphate was used with the primary aim of preterm labour tocolysis, or the prevention and/or treatment of eclampsia.
Two review authors independently assessed RCTs for inclusion, extracted data, and assessed risk of bias and trustworthiness. Dichotomous data were presented as summary risk ratios (RR) with 95% confidence intervals (CI), and continuous data were presented as mean differences with 95% CI. We assessed the certainty of the evidence using the GRADE approach.
We included six RCTs (5917 women and their 6759 fetuses alive at randomisation). All RCTs were conducted in high-income countries. The RCTs compared magnesium sulphate with placebo in women at risk of preterm birth at less than 34 weeks' gestation; however, treatment regimens and inclusion/exclusion criteria varied. Though the RCTs were at an overall low risk of bias, the certainty of evidence ranged from high to very low, due to concerns regarding study limitations, imprecision, and inconsistency. Primary outcomes for infants/children: Up to two years' corrected age, magnesium sulphate compared with placebo reduced cerebral palsy (RR 0.71, 95% CI 0.57 to 0.89; 6 RCTs, 6107 children; number needed to treat for additional beneficial outcome (NNTB) 60, 95% CI 41 to 158) and death or cerebral palsy (RR 0.87, 95% CI 0.77 to 0.98; 6 RCTs, 6481 children; NNTB 56, 95% CI 32 to 363) (both high-certainty evidence). Magnesium sulphate probably resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.96, 95% CI 0.82 to 1.13; 6 RCTs, 6759 children); major neurodevelopmental disability (RR 1.09, 95% CI 0.83 to 1.44; 1 RCT, 987 children); or death or major neurodevelopmental disability (RR 0.95, 95% CI 0.85 to 1.07; 3 RCTs, 4279 children) (all moderate-certainty evidence). At early school age, magnesium sulphate may have resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.82, 95% CI 0.66 to 1.02; 2 RCTs, 1758 children); cerebral palsy (RR 0.99, 95% CI 0.69 to 1.41; 2 RCTs, 1038 children); death or cerebral palsy (RR 0.90, 95% CI 0.67 to 1.20; 1 RCT, 503 children); and death or major neurodevelopmental disability (RR 0.81, 95% CI 0.59 to 1.12; 1 RCT, 503 children) (all low-certainty evidence). Magnesium sulphate may also have resulted in little to no difference in major neurodevelopmental disability, but the evidence is very uncertain (average RR 0.92, 95% CI 0.53 to 1.62; 2 RCTs, 940 children; very low-certainty evidence). Secondary outcomes for infants/children: Magnesium sulphate probably reduced severe intraventricular haemorrhage (grade 3 or 4) (RR 0.76, 95% CI 0.60 to 0.98; 5 RCTs, 5885 infants; NNTB 92, 95% CI 55 to 1102; moderate-certainty evidence) and may have resulted in little to no difference in chronic lung disease/bronchopulmonary dysplasia (average RR 0.92, 95% CI 0.77 to 1.10; 5 RCTs, 6689 infants; low-certainty evidence). Primary outcomes for women: Magnesium sulphate may have resulted in little or no difference in severe maternal outcomes potentially related to treatment (death, cardiac arrest, respiratory arrest) (RR 0.32, 95% CI 0.01 to 7.92; 4 RCTs, 5300 women; low-certainty evidence). However, magnesium sulphate probably increased maternal adverse effects severe enough to stop treatment (average RR 3.21, 95% CI 1.88 to 5.48; 3 RCTs, 4736 women; moderate-certainty evidence). Secondary outcomes for women: Magnesium sulphate probably resulted in little to no difference in caesarean section (RR 0.96, 95% CI 0.91 to 1.02; 5 RCTs, 5861 women) and postpartum haemorrhage (RR 0.94, 95% CI 0.80 to 1.09; 2 RCTs, 2495 women) (both moderate-certainty evidence). Breastfeeding at hospital discharge and women's views of treatment were not reported.
The currently available evidence indicates that magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus, compared with placebo, reduces cerebral palsy, and death or cerebral palsy, in children up to two years' corrected age, and probably reduces severe intraventricular haemorrhage for infants. Magnesium sulphate may result in little to no difference in outcomes in children at school age. While magnesium sulphate may result in little to no difference in severe maternal outcomes (death, cardiac arrest, respiratory arrest), it probably increases maternal adverse effects severe enough to stop treatment. Further research is needed on the longer-term benefits and harms for children, into adolescence and adulthood. Additional studies to determine variation in effects by characteristics of women treated and magnesium sulphate regimens used, along with the generalisability of findings to low- and middle-income countries, should be considered.
Shepherd ES
,Goldsmith S
,Doyle LW
,Middleton P
,Marret S
,Rouse DJ
,Pryde P
,Wolf HT
,Crowther CA
... -
《Cochrane Database of Systematic Reviews》