The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-κB pathway activation.
Cantleyoside (CA) is a kind of iridoid glycosides in Pterocephalus hookeri (C. B. Clarke) Höeck. The purpose of this study was to investigate the effects of CA on human rheumatoid arthritis fibroblast synovial cells (HFLS-RA).
Cell proliferation of HFLS-RA was assessed by CCK-8. ELISA was used to detect cytokines NO, TNF-α, IL-1β/6, MCP-1, MMP-1/3/9 and metabolism-related ATPase activities and ATP levels. JC-1, DCFH-DA, Fluo-3 AM and Calcein AM probes were used to detect mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Ca2+ and mitochondrial permeability conversion pore (MPTP), respectively. Isolated mitochondria assay was used to detect mitochondrial swelling. Oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and real-time ATP production were measured using a Seahorse analyzer. Apoptosis was detected by TUNEL and Hoechst staining. Western blot was used to detect the expressions of AMPK/p-AMPK, Sirt 1, IκBα, NF-κB p65/p-NF-κB p65, Bcl-2 and Bax. Cytoplasmic nuclear isolation was also performed to detect the translocation of NF-κB.
CA significantly suppressed cell proliferation and the levels of NO, TNF-α, IL-1β/6, MCP-1 and MMP-1/3/9 in HFLS-RA. In addition, CA promoted the apoptosis of HFLS-RA by increasing TUNEL and Hoechst positive cells and the ratio of Bax/Bcl-2. Inhibition of energy metabolism in HFLS-RA by CA reduced OCR, ECAR and real-time ATP generation rate. Importantly, CA promoted p-AMPK and Sirt 1 expression, inhibited IκBα degradation to reduce p-NF-κB and translocation.
The results suggest that CA activates the AMPK/Sirt 1/NF-κB pathway by promoting mitochondrial dysfunction, thereby exerting anti-inflammatory and pro-apoptotic effects.
Bai J
,Xie N
,Hou Y
,Chen X
,Hu Y
,Zhang Y
,Meng X
,Wang X
,Tang C
... -
《-》
Aconiti Lateralis Radix Praeparata lipid-soluble alkaloids alleviates IL-1β-induced inflammation of human fibroblast-like synoviocytes in rheumatoid arthritis by inhibiting NF-κB and MAPKs signaling pathways and inducing apoptosis.
Fuzi lipid-soluble alkaloids (FLA) is the main bioactive components extracted from the traditional Chinese medicine Aconiti Lateralis Radix Praeparata ("Fuzi" in Chinese), which has promising analgesic and anti-inflammatory effects. However, the effects and the underlying mechanisms of FLA on rheumatoid arthritis (RA) have not been studied. The present study aimed to explore the anti-arthritic effects of FLA and its underlying mechanisms.
To standardize the FLA, UPLC-HR-MS was used for quantitative and qualitative analysis of the representative alkaloids. Cell viability was measured by MTT. The anti-inflammatory activity of FLA was examined by analyzing the expression levels of inflammatory mediators such as TNF-α, IL-6, MMP-1, MMP-3, PGE2, and COX-2 using ELISA and RT-PCR analysis. The Annexin V-FITC/PI double staining method was used to detect the apoptosis of HFLS-RA and analyzed by flow cytometry. Western blot analysis was used to analyze the expression of NF-κB, MAPKs and mitochondrial apoptosis pathway related proteins.
FLA had a significant inhibitory effect on the proliferation of HFLS-RA induced by IL-1β, which was accompanied by decreased expression levels of TNF-α, IL-6, MMP-1, MMP-3, COX-2 and PGE2. Remarkably, FLA inhibited the activation of NF-κB and MAPKs signaling pathways in IL-1β-induced HFLS-RA, as well as inducing HFLS-RA apoptosis through the mitochondrial apoptosis pathway.
FLA inhibited the expression and synthesis of inflammatory mediators by inhibiting the activation of NF-κB and MAPKs signaling pathways in HFLS-RA, and induced apoptosis of HFLS-RA via the mitochondrial apoptosis pathway.
Guo C
,He L
,Hu N
,Zhao X
,Gong L
,Wang C
,Peng C
,Li Y
... -
《-》
Oxymatrine hydrazone (OMTH) synthesis and its protective effect for rheumatoid arthritis through downregulation of MEK/NF-κB pathway.
Rheumatoid arthritis (RA) is one of the inflammatory diseases detected in more than 1% of the world population. In the present study, oxymatrine hydrazone (OMTH) was synthesized and investigated for treatment of RA in vitro in TNF-α induced fibroblast-like synoviocyte cell model. Cell viability and apoptosis were detected using MTT and flow cytometry assays, respectively. ELISA was used for determination of inflammatory cytokines and western blotting for evaluation of protein expression. Pretreatment of HFLS-RA cells with 0.5, 1.0, 1.5, 2.0, and 2.5 μM doses of OMTH suppressed TNF-α induced promotion of proliferative potential in dose-based manner. The OMTH pretreatment of TNF-α exposed HFLS-RA cells significantly increased apoptotic cell proportion. In TNF-α exposed HFLS-RA cells OMTH pretreatment elevated Bax and suppressed Bcl-2 expression. Treatment of HFLS-RA cells with OMTH prevented TNF-α mediated elevation of IL-1β, IL-6 and IL-8. Moreover, OMTH treatment of HFLS-RA cells effectively suppressed TNF-α mediated elevated levels of MMP-1 and MMP-13. Pretreatment of HFLS-RA cells with OMTH reversed TNF-α mediated promotion of iNOS and COX-2 levels. The MEK/1/2 and p65 phosphorylation in TNF-α exposed HFLS-RA cells was reduced by OMTH pre-treatment in dose-based manner. Thus, OMTH successfully inhibited TNF-α-mediated increased viability of RA synovial cells and activated apoptosis. Pretreatment of TNF-α exposed synovial cells with OMTH targeted phosphorylation of MEK/NF-κB. Therefore, OMTH may act as potential therapeutic agent for RA treatment.
Zhang G
,Liu B
,Zeng Z
,Chen Q
,Feng Y
,Ning X
... -
《-》
Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways.
The dried aboveground part of Geranium Wilfordii Maxim. (G. Wilfordii) is a traditional Chinese herbal medicine named lao-guan-cao. It has long been used for dispelling wind-dampness, unblocking meridians, and stopping diarrhea and dysentery. Previous investigations have revealed that 50% ethanolic extract of G. Wilfordii has anti-inflammatory and anti-proliferation activities on TNF-α induced murine fibrosarcoma L929 cells. Corilagin (COR) is a main compound in G. Wilfordii with the content up to 1.69 mg/g. Pharmacology study showed that COR has anti-inflammatory, anti-tumor, anti-microorganism, anti-oxidant, and hepatoprotective effects. However, there is no any investigation on its anti-proliferation and anti-inflammation effects in rheumatoid arthritis (RA).
The present study aimed to evaluate the potential pharmacological mechanisms of anti-proliferation and anti-inflammation effects of COR in RA.
In vitro, MH7A cells model induced by IL-1β was used. The anti-proliferation activity of COR was assessed by Cell Counting Kit-8 (CCK-8) assay, and the anti-migration and anti-invasion activity of COR was determined by wound healing assay and transwell assay, respectively. Furthermore, apoptosis assay by flow cytometer was used to measure the pro-apoptotic effect of COR. The mRNA expressions of Bax, Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS were measured by qRT-PCR, and related protein were further verified by ELISA kits or Western blot. Moreover, protein levels associated with NF-κB and MAPK signaling pathways of p65, P-p65, IκBα, P-IκBα, ERK1/2, P-ERK1/2, JNK, P-JNK1/2/3, p38, and P-p38 were determined by Western blot. The nuclear translocation of NF-κB-p65 was detected by immunofluorescent staining. In vivo, adjuvant-induced arthritis (AIA) rat model was used, and the body weight, paw swelling, and arthritis score during the entire period were measured. Histopathological analysis of joints of synovial tissues was also determined. The expression of pro-inflammatory cytokines in serum including IL-6, TNF-α, IL-1β, and IL-17 were measured.
The in vitro results showed that COR could dose-dependently inhibit the proliferation, migration, and invasion of IL-1β-induced MH7A cells, as well as promote its apoptosis. Moreover, it also suppressed the over-expression of Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS while up-regulated the level of Bax. Besides, the ratios of P-p65/p65, P-IκBα/IκBα, P-ERK/ERK, P-JNK/JNK, and P-p38/p38 were decreased, and the nuclear translocation of p65 induced by IL-1β was blocked by COR. In vivo results indicated that COR significantly reduced the paw swelling and arthritis score in AIA rats, and inhibited synovial tissue hyperplasia and erosion, as well as inflammatory cells infiltration. It also decreased the serum pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, and IL-17) production.
These results revealed that COR exerted anti-rheumatoid arthritis effect, and its underlying mechanisms may be related to inhibiting the proliferation, migration, and invasion of synovial fibroblasts, enhancing cell apoptosis, and suppressing inflammatory responses via downregulating NF-κB and MAPK signaling pathways.
Shen Y
,Teng L
,Qu Y
,Liu J
,Zhu X
,Chen S
,Yang L
,Huang Y
,Song Q
,Fu Q
... -
《-》