Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
摘要:
Structural DNA nanotechnology has been developed into a powerful method for creating self-assembled nanomaterials. Their compatibility with biosystems, nanoscale addressability, and programmable dynamic features make them appealing candidates for biomedical research. This review paper focuses on DNA self-assembly strategies and designer nanostructures with custom functions for biomedical applications. Specifically, we review the development of DNA self-assembly methods, from simple DNA motifs consisting of a few DNA strands to complex DNA architectures assembled by DNA origami. Three advantages are discussed using structural DNA nanotechnology for biomedical applications: (1) precise spatial control, (2) molding and guiding other biomolecules, and (3) using reconfigurable DNA nanodevices to overcome biomedical challenges. Finally, we discuss the challenges and opportunities of employing DNA nanotechnology for biomedical applications, emphasizing diverse assembly strategies to create a custom DNA nanostructure with desired functions.
收起
展开
DOI:
10.2174/1568026622666220321140729
被引量:
年份:
2022


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(544)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无