-
Multibreed genomic evaluation for production traits of dairy cattle in the United States using single-step genomic best linear unbiased predictor.
Official multibreed genomic evaluations for dairy cattle in the United States are based on multibreed BLUP evaluation followed by single-breed estimation of SNP effects. Single-step genomic BLUP (ssGBLUP) allows the straight computation of genomic (G)EBV in a multibreed context. This work aimed to develop ssGBLUP multibreed genomic predictions for US dairy cattle using the algorithm for proven and young (APY) to compute the inverse of the genomic relationship matrix. Only purebred Ayrshire (AY), Brown Swiss (BS), Guernsey (GU), Holstein (HO), and Jersey (JE) animals were considered. A 3-trait model with milk (MY), fat (FY), and protein (PY) yields was applied using about 45 million phenotypes recorded from January 2000 to June 2020. The whole data set included about 29.5 million animals, of which almost 4 million were genotyped. All the effects in the model were breed specific, and breed was also considered as fixed unknown parent groups. Evaluations were done for (1) each single breed separately (single); (2) HO and JE together (HO_JE); (3) AY, BS, and GU together (AY_BS_GU); (4) all the 5 breeds together (5_BREEDS). Initially, 15k core animals were used in APY for AY_BS_GU and 5_BREEDS, but larger core sets with more animals from the least represented breeds were also tested. The HO_JE evaluation had a fixed set of 30k core animals, with an equal representation of the 2 breeds, whereas HO and JE single-breed analysis involved 15k core animals. Validation for cows was based on correlations between adjusted phenotypes and (G)EBV, whereas for bulls on the regression of daughter yield deviations on (G)EBV. Because breed was correctly considered in the model, BLUP results for single and multibreed analyses were the same. Under ssGBLUP, predictability and reliability for AY, BS, and GU were on average 7% and 2% lower in 5_BREEDS compared with single-breed evaluations, respectively. However, validation parameters for these 3 breeds became better than in the single-breed evaluations when 45k animals were included in the core set for 5_BREEDS. Evaluations for Holsteins were more stable across scenarios because of the greatest number of genotyped animals and amount of data. Combining AY, BS, and GU into one evaluation resulted in predictions similar to the ones from single breed, especially when using about 30k core animals in APY. The results showed that single-step large-scale multibreed evaluations are computationally feasible, but fine tuning is needed to avoid a reduction in reliability when numerically dominant breeds are combined. Having evaluations for AY, BS, and GU separated from HO and JE may reduce inflation of GEBV for the first 3 breeds.
Cesarani A
,Lourenco D
,Tsuruta S
,Legarra A
,Nicolazzi EL
,VanRaden PM
,Misztal I
... -
《-》
-
Multibreed genomic evaluations using purebred Holsteins, Jerseys, and Brown Swiss.
Multibreed models are currently used in traditional US Department of Agriculture (USDA) dairy cattle genetic evaluations of yield and health traits, but within-breed models are used in genomic evaluations. Multibreed genomic models were developed and tested using the 19,686 genotyped bulls and cows included in the official August 2009 USDA genomic evaluation. The data were divided into training and validation sets. The training data set comprised bulls that were daughter proven and cows that had records as of November 2004, totaling 5,331 Holstein, 1,361 Jersey, and 506 Brown Swiss. The validation data set had 2,508 Holstein, 413 Jersey, and 185 Brown Swiss bulls that were unproven (no daughter information) in November 2004 and proven by August 2009. A common set of 43,385 single nucleotide polymorphisms (SNP) was used for all breeds. Three methods of multibreed evaluation were investigated. Method 1 estimated SNP effects separately within breed and then applied those breed-specific SNP estimates to the other breeds. Method 2 estimated a common set of SNP effects from combined genotypes and phenotypes of all breeds. Method 3 solved for correlated SNP effects within each breed estimated jointly using a multitrait model where breeds were treated as different traits. Across-breed genomic predicted transmitting ability (GPTA) and within-breed GPTA were compared using regressions to predict the deregressed validation data. Method 1 worked poorly, and coefficients of determination (R(2)) were much lower using training data from a different breed to estimate SNP effects. Correlations between direct genomic values computed using training data from different breeds were less than 30% and sometimes negative. Across-breed GPTA from method 2 had higher R(2) values than parent average alone but typically produced lower R(2) values than the within-breed GPTA. The across-breed R(2) exceeded the within-breed R(2) for a few traits in the Brown Swiss breed, probably because information from the other breeds compensated for the small numbers of Brown Swiss training animals. Correlations between within-breed GPTA and across-breed GPTA ranged from 0.91 to 0.93. The multibreed GPTA from method 3 were significantly better than the current within-breed GPTA, and adjusted R(2) for protein yield (the only trait tested for method 3) were highest of all methods for all breeds. However, method 3 increased the adjusted R(2) by only 0.01 for Holsteins, ≤0.01 for Jerseys, and 0.01 for Brown Swiss compared with within-breed predictions.
Olson KM
,VanRaden PM
,Tooker ME
《-》
-
Indirect genomic predictions for milk yield in crossbred Holstein-Jersey dairy cattle.
The objective of this study was to predict genomic breeding values for milk yield of crossbred dairy cattle under different scenarios using single-step genomic BLUP (ssGBLUP). The data set included 13,880,217 milk yield measurements on 6,830,415 cows. Genotypes of 89,558 Holstein, 40,769 Jersey, and 22,373 Holstein-Jersey crossbred animals were used, of which all Holstein, 9,313 Jersey, and 1,667 crossbred animals had phenotypic records. Genotypes were imputed to 45K SNP markers. The SNP effects were estimated from single-breed evaluations for Jersey (JE), Holstein (HO) and crossbreds (CROSS), and multibreed evaluations including all Jersey and Holstein (JE_HO) or approximately equal proportions of Jersey, Holstein, and crossbred animals (MIX). Indirect predictions (IP) of the validation animals (358 crossbred animals with phenotypes excluded from evaluations) were calculated using the resulting SNP effects. Additionally, breed proportions (BP) of crossbred animals were applied as a weight when IP were estimated based on each pure breed. The predictive ability of IP was calculated as the Pearson correlation between IP and phenotypes of the validation animals adjusted for fixed effects in the model. Regression of adjusted phenotypes on IP was used to assess the inflation of IP. The predictive ability of IP for CROSS, JE, HO, JE_HO, and MIX scenario was 0.50, 0.50, 0.47, 0.50, and 0.46, respectively. Using BP was the least successful, with a predictive ability of 0.32. The inflation of the IP for crossbred animals using CROSS, JE, HO, JE_HO, MIX, and BP scenarios were 1.17, 0.65, 0.55, 0.78, 1.00, and 0.85, respectively. The IP of crossbred animals can be predicted using single-step GBLUP under a scenario that includes purebred genotypes.
Steyn Y
,Gonzalez-Pena D
,Bernal Rubio YL
,Vukasinovic N
,DeNise SK
,Lourenco DAL
,Misztal I
... -
《-》
-
Genomic predictions in purebreds with a multibreed genomic relationship matrix1.
Combining breeds in a multibreed evaluation can have a negative impact on prediction accuracy, especially if single nucleotide polymorphism (SNP) effects differ among breeds. The aim of this study was to evaluate the use of a multibreed genomic relationship matrix (G), where SNP effects are considered to be unique to each breed, that is, nonshared. This multibreed G was created by treating SNP of different breeds as if they were on nonoverlapping positions on the chromosome, although, in reality, they were not. This simple setup may avoid spurious Identity by state (IBS) relationships between breeds and automatically considers breed-specific allele frequencies. This scenario was contrasted to a regular multibreed evaluation where all SNPs were shared, that is, the same position, and to single-breed evaluations. Different SNP densities (9k and 45k) and different effective population sizes (Ne) were tested. Five breeds mimicking recent beef cattle populations that diverged from the same historical population were simulated using different selection criteria. It was assumed that quantitative trait locus (QTL) effects were the same over all breeds. For the recent population, generations 1-9 had approximately half of the animals genotyped, whereas all animals in generation 10 were genotyped. Generation 10 animals were set for validation; therefore, each breed had a validation group. Analyses were performed using single-step genomic best linear unbiased prediction. Prediction accuracy was calculated as the correlation between true (T) and genomic estimated breeding values (GEBV). Accuracies of GEBV were lower for the larger Ne and low SNP density. All three evaluation scenarios using 45k resulted in similar accuracies, suggesting that the marker density is high enough to account for relationships and linkage disequilibrium with QTL. A shared multibreed evaluation using 9k resulted in a decrease of accuracy of 0.08 for a smaller Ne and 0.12 for a larger Ne. This loss was mostly avoided when markers were treated as nonshared within the same G matrix. A G matrix with nonshared SNP enables multibreed evaluations without considerably changing accuracy, especially with limited information per breed.
Steyn Y
,Lourenco DAL
,Misztal I
《-》
-
Changes in genetic trends in US dairy cattle since the implementation of genomic selection.
Genomic selection increases accuracy and decreases generation interval, accelerating genetic changes in populations. Assumptions of genetic improvement must be addressed to quantify the magnitude and direction of change. Genetic trends of US dairy cattle breeds were examined to determine the genetic gain since the implementation of genomic evaluations in 2009. Inbreeding levels and generation intervals were also investigated. Breeds included Ayrshire, Brown Swiss, Guernsey, Holstein (HO), and Jersey (JE), which were characterized by the evaluation breed the animal received. Mean genomic predicted breeding values (PBV¯) were analyzed per year to calculate genetic trends for bulls and cows. The data set contained 154,008 bulls and 33,022,242 cows born since 1975. Breakpoints were estimated using linear regression, and nonlinear regression was used to fit the piecewise model for the small sample number in some years. Generation intervals and inbreeding levels were also investigated since 1975. Milk, fat, and protein yields, somatic cell score, productive life, daughter pregnancy rate, and livability PBV¯ were documented. In 2017, 100% of bulls in this data set were genotyped. The percentage of genotyped cows has increased 23 percentage points since 2010. Overall, production traits have increased steadily over time, as expected. The HO and JE breeds have benefited most from genomics, with up to 192% increase in genetic gain since 2009. Due to the low number of observations, trends for Ayrshire, Brown Swiss, and Guernsey are difficult to infer from. Trends in fertility are most substantial; particularly, most breeds are trending downwards and daughter pregnancy rate for JE has been decreasing steadily since 1975 for bulls and cows. Levels of genomic inbreeding are increasing in HO bulls and cows. In 2017, genomic inbreeding levels were 12.7% for bulls and 7.9% for cows. A suggestion to control this is to include the genomic inbreeding coefficient with a negative weight to the selection index of bulls with high future genomic inbreeding levels. For sires of bulls, the current generation intervals are 2.2 yr in HO, 3.2 in JE, 4.4 in Brown Swiss, 5.1 in Ayrshire, and 4.3 in Guernsey. The number of colored breed bulls in the United States is currently at an extremely low level, and this number will only increase with a market incentive or additional breed association involvement. Increased education and extension could be beneficial to increase knowledge about inbreeding levels, use of genomics and genetic improvement, and genetic diversity in the genomic selection era.
Guinan FL
,Wiggans GR
,Norman HD
,Dürr JW
,Cole JB
,Van Tassell CP
,Misztal I
,Lourenco D
... -
《-》