The potential role of RNA N6-methyladenosine in primary Sjögren's syndrome.
The pathogenesis of primary Sjögren's syndrome (pSS) remains incompletely understood. The N6-methyladenosine (m6A) RNA modification, the most abundant internal transcript modification, has close associations with multiple diseases. This study aimed to investigate the role of m6A in patients with pSS.
This study enrolled 44 patients with pSS, 50 age- and gender-matched healthy controls (HCs), and 11 age- and gender-matched patients with non-SS sicca. We detected the messenger RNA (mRNA) levels of m6A elements (including METTL3, WTAP, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2), ISG15, and USP18 in peripheral blood mononuclear cells (PBMCs) from patients with pSS, patients with non-SS sicca, and HCs. The clinical characteristics and laboratory findings of patients with pSS and patients with non-SS sicca were also collected. We used binary logistic regression to determine if m6A elements were risk factors for pSS.
The mRNA levels of m6A writers (METTL3 and RBM15), erasers (ALKBH5 and FTO), and readers (YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2) were all significantly higher in PBMCs from patients with pSS than in HCs. The mRNA levels of m6A writers (METTL3 and WTAP) and readers (YTHDF2, YTHDF3, and YTHDC2) were lower in PBMCs from patients with pSS compared to patients with non-SS sicca. The expression of METTL3, RBM15, FTO, YTHDF1, YTHDF2, YTHDC1, and YTHDC2 was positively correlated with the level of C-reactive protein (CRP) of patients with pSS. The mRNA level of YTHDF1 in PBMCs from patients with pSS was negatively correlated with the EULAR Sjögren's syndrome disease activity index (ESSDAI) score. In patients with pSS, FTO, YTHDC1, and YTHDC2 were also related to white blood cells (WBCs), neutrophils, lymphocytes, and monocytes. Increased mRNA level of ALKBH5 in PBMCs was a risk factor for pSS, as determined by binary logistic regression analysis. The mRNA level of ISG15 was positively correlated with that of FTO, YTHDF2, YTHDF3, and YTHDC2 in patients with pSS.
Compared with HCs, the expression of METTL3, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 was considerably higher in PBMCs from patients with pSS. In comparison with patients with non-SS sicca, the expression of METTL3, WTAP, YTHDF2, YTHDF3, and YTHDC2 was reduced in PBMCs from patients with pSS. The m6A elements correlating with clinical variables may indicate the disease activity and inflammation status of pSS. Elevated expression of ALKBH5 was a risk factor for pSS. The dynamic process of m6A modification is active in pSS. m6A elements (FTO, YTHDF2, YTHDF3, or YTHDC2) might target ISG15, stimulate the expression of ISG15, and activate the type I IFN signaling pathway, playing an active role in initiating the autoimmunity in pSS.
Xiao Q
,Wu X
,Deng C
,Zhao L
,Peng L
,Zhou J
,Zhang W
,Zhao Y
,Fei Y
... -
《Frontiers in Medicine》
Association of N6-methyladenosine readers' genes variation and expression level with pulmonary tuberculosis.
N6-Methyladenosine (m6A) is associated with many biological processes and the development of multiple diseases. The aim of this study was to analyze the association of m6A readers' genes variation, as well as their expression levels, with pulmonary tuberculosis (PTB). A total of 11 single-nucleotide polymorphisms (SNPs) in m6A readers' genes (i.e., YTHDF1 rs6122103, rs6011668, YTHDF2 rs602345, rs3738067, YTHDF3 rs7464, rs12549833, YTHDC1 rs3813832, rs17592288, rs2293596, and YTHDC2 rs6594732, and rs2416282) were genotyped by SNPscan™ technique in 457 patients with PTB and 466 normal controls. The m6A readers' genes expression levels in peripheral blood mononuclear cells (PBMCs) from 78 patients with PTB and 86 normal controls were detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). There was no significant association between all SNPs in YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 genes and PTB susceptibility. The increased frequencies of YTHDF2 rs3738067 GG genotype and YTHDC1 rs3813832 CC genotype, C allele, were, respectively, found in PTB patients with hypoproteinemia and fever. YTHDC2 rs6594732 variant was significantly associated with drug-induced liver damage and sputum smear-positive, and the rs2416282 variant was significantly associated with fever in patients with PTB. Compared with controls, the YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 mRNA levels were significantly decreased in PTB. Moreover, YTHDF1 level was negatively associated with erythrocyte sedimentation rate (ESR), and YTHDF3 and YTHDC1 levels were negatively related to alanine aminotransferase (ALT) in patients with PTB. Our results demonstrated that YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 genes SNPs did not contribute to PTB susceptibility, while their decreased levels in patients with PTB suggested that these m6A readers might play significant roles in PTB.
Li HM
,Tang F
,Wang LJ
,Huang Q
,Pan HF
,Zhang TP
... -
《Frontiers in Public Health》
METTL3-m6A methylation inhibits the proliferation and viability of type II alveolar epithelial cells in acute lung injury by enhancing the stability and translation efficiency of Pten mRNA.
The pathogenesis of acute lung injury (ALI) involves a severe inflammatory response, leading to significant morbidity and mortality. N6-methylation of adenosine (m6A), an abundant mRNA nucleotide modification, plays a crucial role in regulating mRNA metabolism and function. However, the precise impact of m6A modifications on the progression of ALI remains elusive.
ALI models were induced by either intraperitoneal injection of lipopolysaccharide (LPS) into C57BL/6 mice or the LPS-treated alveolar type II epithelial cells (AECII) in vitro. The viability and proliferation of AECII were assessed using CCK-8 and EdU assays. The whole-body plethysmography was used to record the general respiratory functions. M6A RNA methylation level of AECII after LPS insults was detected, and then the "writer" of m6A modifications was screened. Afterwards, we successfully identified the targets that underwent m6A methylation mediated by METTL3, a methyltransferase-like enzyme. Last, we evaluated the regulatory role of METTL3-medited m6A methylation at phosphatase and tensin homolog (Pten) in ALI, by assessing the proliferation, viability and inflammation of AECII.
LPS induced marked damages in respiratory functions and cellular injuries of AECII. The m6A modification level in mRNA and the expression of METTL3, an m6A methyltransferase, exhibited a notable rise in both lung tissues of ALI mice and cultured AECII cells subjected to LPS treatment. METTL3 knockdown or inhibition improved the viability and proliferation of LPS-treated AECII, and also reduced the m6A modification level. In addition, the stability and translation of Pten mRNA were enhanced by METTL3-mediated m6A modification, and over-expression of PTEN reversed the protective effect of METTL3 knockdown in the LPS-treated AECII.
The progression of ALI can be attributed to the elevated levels of METTL3 in AECII, as it promotes the stability and translation of Pten mRNA through m6A modification. This suggests that targeting METTL3 could offer a novel approach for treating ALI.
Wang Q
,Shen J
,Luo S
,Yuan Z
,Wei S
,Li Q
,Yang Q
,Luo Y
,Zhuang L
... -
《RESPIRATORY RESEARCH》
Characteristics of n6-methyladenosine (m6A) regulators and role of FTO/TNC in scleroderma.
m6A regulators have important roles in a variety of autoimmune diseases, but their potential function in scleroderma, a refractory connective tissue disease, remains unclear. Tenascin C (TNC) is known to be a factor promoting collagen deposition in the development of scleroderma, but the regulatory relationship between TNC and m6A regulators is unknown.
We extracted GSE33463 data consisting of forty-one healthy controls and sixty-one patients with scleroderma, and we analyzed the expression levels of twenty-one m6A regulators as well as the associations between them. In addition, we obtained random forest (RF) and nomogram models to predict the likehood of scleroderma. Next, we categorized the m6Aclusters and geneclusters by consensus clustering, and we performed an immune cell infiltration analysis for each cluster. Finally, we injected adenoviruses into a bleomycin (BLM)-induced mouse model of scleroderma, which was used to overexpress FTO and TNC. We assess the extent of skin fibrosis in the mice samples using pathology stains and measuring their hydroxyproline content and collagen mRNA.
We initially identified fourteen differentially expressed m6A regulators (WTAP, RBM15, CBLL1, FTO, ALKBH5, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, RBMX, HNRNPC, IGFBP1 and IGFBP2). We found ALKBH5 to be positively associated with CBLL1 and RBM15, and FTO to be negatively associated with WTAP. In addition, we identified four m6A regulators (CBLL1, IGFBP1, YTHDF2 and IGFBP2) using a RF model, and we designed a nomogram model with those variables that proved reliable according to the calibration curve and clinical impact curve. We found that the m6Acluster A was correlated with Type 1 T helper cell infiltration and the genecluster A was correlated with regulatory T cell infiltration. Finally, we showed that FTO overexpression downregulated the m6A and mRNA levels of TNC, and alleviated skin fibrosis in the mouse model of scleroderma. Thus, our overexpression experiments provide preliminary evidence suggesting that TNC is an adverse factor in scleroderma.
Our approach might be useful as a new and accurate scleroderma diagnosis method. Moreover, our results suggested that FTO/TNC might be a novel scleroderma therapeutic target.
Yu Y
,Liang C
,Tang Q
,Shi Y
,Shen L
... -
《-》