-
Distribution, ecological risk assessment and source identification of pollutants in soils of different land-use types in degraded wetlands.
Urbanization and global warming are generating ecological degradation and land pattern alteration problems in natural wetlands. These changes are greatly affecting the ecological services of wetlands. Therefore, there is an urgent need to explore the relationship between pollutants and land-use type for wetland restoration purposes. Zaozhadian Lake is a freshwater wetland in the North China Plain, which is facing degradation and land-use types changes. An experiment for analyzing soil pollutants was conducted in three land-use types of farmland, lake, and ditch in the Zaozhadian Lake. The aims of this study were to identify the distribution, pollution degree, and sources of pollutants in different land-use types, and to explore the influence of land-use type changes on contamination.
In this study, surface sediments (0-10 cm) of three land types (farmland, lake, and ditch) in Zaozhadian Lake were collected, and heavy metals (Cu, Ni, Zn, Pb, Cd, Cr, Hg), As, total nitrogen (TN), total phosphorus (TP) and organic matter (OM) were determined. Kriging interpolation was used to visualize the pollutants distribution. The pollution degree of TN and TP was evaluated by the Nemerow pollution index. The pollution of heavy metals and As was evaluated by the geological accumulation index (Igeo ) and the potential ecological risk index (RI). Then, dual hierarchical clustering analysis and the principal component analysis were performed to further analyze the impact of land type changes on pollutants.
The heavy metal contents in the farmland were higher than other areas, while the TN (3.71 ± 1.03 g kg-1) and OM (57.17 ± 15.16 g kg-1) in lake sediments were higher than that in other regions. Farmland, lake, and ditches had low ecological risks, with RI values of 84.21, 71.34, and 50.78, respectively. The primary heavy metal pollutants are Pb, Cu, and Ni. Furthermore, Cu, As, Ni, Pb, and Zn were primarily derived from agriculture pollution, the source of Cd was the industrial pollution, and Cr mainly originated from natural sources. Nutrients primarily came from the decomposition of aquatic animals, plants, and human-related activities. When the lake area was converted into farmland, the heavy metal concentrations in the soils increased and the TN and OM decreased. Based on the results, this study put forward key strategies including the adjustment of the land-use type and restriction of the entry of pollutants into the wetland ecosystems in the Zaozhadian Lake. More attention should be paid to the impact of land-use type change on pollutants in wetlands.
Han Y
,Wang H
,Zhang G
,Zhang S
,Liu X
,Liu L
... -
《PeerJ》
-
Effects of land use/cover change on heavy metal distribution of soils in wetlands and ecological risk assessment.
This study aimed to determine the impact of land use/cover changes on the heavy metal content in the Sultan Marshland and surrounding area and assess the pollution status. 54 topsoil samples (0-20 cm) were collected from the Rangeland, Farmland, Scrubland, Southern Marshland, Northern Marshland, and Dry Lake areas. The heavy metal contents of the soil samples (Cr, Pb, Fe, Zn, Cu, Co, Mn, Cd, Mo, As, and Ni) were determined using ICP-MS and ICP-OES devices. The impact of land use/cover change on soil heavy metal content was evaluated using variance analysis, while differences between groups were identified using the Duncan test. Principal Component Analysis (PCA) was conducted to identify potential sources of heavy metals. The contamination status of the soils was evaluated based on land use/cover using the Contamination Factor (Cf), Pollution Load Index (PLI), Ecological Risk Factor (Er), and Potential Ecological Risk Index (PERI). Changes in land use/cover around the Sultan Marshlands affected heavy metal distribution of the soils except for Cd. Among all land use/cover types, Fe concentration was the highest in the soils, while Cd concentration was the lowest. Soils in Southern Marshland exhibited higher average concentrations of Cr, Fe, Zn, Co, Cu, and Ni compared to other land uses/covers. Farmlands and rangelands had higher concentrations of Cd, As and Pb. Land use/cover was ranked based on the total heavy metal load in the following order in terms of average values: Southern Marshland > Scrubland > Farmland > Rangeland > Northern Marshland > Dry Lake. According to Cf, the soils in the Dry Lake were exposed to considerable levels of As contamination. Based on PLI, half of the soil sampling points in the Southern Marshland soils showed a degradation in environmental quality. Er indicated that all land uses moderately polluted with Cd. According to the average PERI, all soils under different land use/cover types were categorized as having a low ecological risk. It was believed that heavy metals originated from both natural and human activities. To ensure the sustainability of the ecosystem and to mitigate the risk of heavy metal pollution entering the food chain, it is recommended to manage farming and mining activities and land use habits.
Yaşar Korkanç S
,Korkanç M
,Amiri AF
《-》
-
How Does Adjacent Land Use Influence Sediment Metals Content and Potential Ecological Risk in the Hongze Lake Wetland?
Guo Y
,Xu Y
,Zhu C
,Li P
,Zhu Y
,Han J
... -
《-》
-
Distribution and ecological risk assessment of heavy metals in sediments of Dajiuhu Lake Wetland in Shennongjia, China.
The rapid development of modern society has resulted in discharge of large, heavy metal quantities into wetlands that have been continuously accumulating, causing severe pollution. Dajiuhu, located in the Shennongjia Forest District of Hubei Province in China, is a wetland of significant value internationally, serving as a model wetland ecosystem with heightened scientific research value. In this study, 27 surface sediment samples from nine sub-lakes in Dajiuhu were collected in August 2020. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the sediments were determined. The heavy metal occurrence and speciation characteristics were analyzed by an improved BCR (European Community Bureau of Reference) extraction method. Four methods were used to evaluate heavy metals' pollution degree and ecological risk. The possible source of heavy metals was inferred using correlation analysis and principal component analysis. The heavy metal content in the lake sediments of Dajiuhu wetland was from the highest to the lowest concentration as follows: Zn [Formula: see text] Cr [Formula: see text] Ni [Formula: see text] Pb [Formula: see text] Cu [Formula: see text] Cd. The average Cd content exceeded the national nature reserve threshold values, while the other heavy metals measured were below their respective threshold values. However, due to the occurrence of Pb and Cd in different forms, they still pose certain pollution and ecological risk to the lake wetlands. On the other hand, Zn, Cr, Ni, and Cu do not pose an ecological risk in the lakes of the Dajiuhu wetland. The spatial distribution of heavy metal content in the nine sub-lakes did vary significantly. Regarding the heavy metal sources in the lake sediments, Ni, Cr, and Cu originate from natural factors, and Cd and Pb have mainly anthropogenic origins. In contrast, Zn has both natural and anthropogenic origins. This study provides further insights into the study of heavy metal pollution in lake wetlands. It provides a framework and a direction for managing heavy metal pollution in the Dajiuhu wetland.
Wang J
,Ge J
,Yang X
,Cheng D
,Yuan C
,Liu Z
,Yang S
,Guo Y
,Gu Y
... -
《-》
-
[Contamination Assessment and Source Apportionment of Soil Heavy Metals in Typical Villages and Towns in a Nonferrous Metal Mining City].
To investigate the soil contamination degree and potential ecological risk level of heavy metals in villages and towns in Tongling City, we collected 67 surface soil samples (including surface dusts and river sediments) from the typical districts, namely Shun'an Town, Zhongming Town, and Yi'an Economic Development Zone, and measured the contents of heavy metals including Cu, Zn, Pb, Cr, Cd, As, and Ni. Then, spatial distribution characteristics of heavy metals were analyzed, and their contamination degree and potential ecological risk were assessed. Finally, source apportionment of soil heavy metals was conducted using factor analysis. The results showed that the soil pH was weakly acidic in the study area, and the average contents of Cu, Zn, Cr, Cd, As, and Ni were 4.94, 2.89, 2.07, 0.94, 7.97, 4.03, and 2.02 times their soil background values in Tongling City, respectively. In general, the contents of soil heavy metals in the western part were higher than those in the eastern part across the studied area. According to the Nemerow pollution index, Cu, Cd, As, and Pb reached pollution levels; Zn, and Ni approached moderate pollution levels; and Cr belonged to the no pollution degree category. The Nemerow comprehensive pollution index of different land types was arranged in the order of river bed>town district>industrial land>vegetable land>agricultural land>mountain forest>village. On the whole, the contamination degree of soil heavy metals in the study area reached severe pollution levels. The order of potential ecological risk coefficients of soil heavy metals was Cd>As>Cu>Pb>Ni>Zn>Cr, in which Cd belonged to the extremely high risk level, Cu and As belonged to the medium risk level, and the others were all low risk levels. The potential ecological risk levels corresponding to different land types were as follows:river bed>town distribution>industrial land>vegetable land>agricultural land>village>mountain forest. The industrial land, vegetable land, and town district generally reached a very high risk level, and the agricultural land reached a high risk, whereas both village and mountain forest land showed a medium risk. Principal component analysis showed that Cu, Zn, Pb, Cd, and As in the study area were derived from local metal mining pollution; Cr was from both the geological background and metal mining pollution; and Ni mainly came from fossil fuel combustion.
Wang F
,Huang YH
,Li RZ
,Wu HF
... -
《-》