A Risk Score Signature Consisting of Six Immune Genes Predicts Overall Survival in Patients with Lower-Grade Gliomas.

来自 PUBMED

作者:

Wu YPeng ZGu SWang HXiang W

展开

摘要:

Lower-grade gliomas (LGGs) are less aggressive with a long overall survival (OS) time span. Because of individualized genomic features, a prognostic system incorporating molecular signatures can more accurately predict OS. Differential expression analysis between LGGs and normal tissues was performed using the Gene Expression Omnibus (GEO) datasets (GSE4290 and GSE12657). Immune-related differentially expressed genes (ImmPort-DEGs) were analyzed for functional enrichment. The least absolute shrinkage and selection operator (LASSO) analysis was performed to develop an immune risk score signature (IRSS). We extracted information from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) to establish and validate the model. The relationship of model gene sets with immune infiltration was analyzed based on gene set variation analysis (GSVA) scores. Patients were divided into low- and high-risk groups based on the median score. The time-dependent receiver-operating characteristic (ROC) curve and the Kaplan-Meier curve were used to evaluate the model. Then, a precise prognostic nomogram was established, and its efficacy was verified. A total of 18 related immune genes were identified, building a 6-gene IRSS (BMP2, F2R, FGF13, PCSK1, PRKCB, and PTGER3). DEGs were enriched in T cell and NK cell regulatory pathways. Immune infiltration analysis confirmed that the gene signature correlated with a decrease in innate immune cells. In terms of model evaluation, ROC curves at 1, 3, and 5 years showed moderate predictive ability of IRSS (AUC = 0.930, 0.797, and 0.728). The Cox regression analysis revealed that IRSS was an independent prognostic factor, and the nomogram model had good predictive ability (C - index = 0.828). Meanwhile, the predictive power of IRSS was also confirmed in the training cohort. The Kaplan-Meier results showed that the prognosis of the high-risk group was significantly worse in all cohorts. IRSS may serve as a novel survival prediction tool in the classification of LGG patients.

收起

展开

DOI:

10.1155/2022/2558548

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(836)

参考文献(41)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读