A hybrid method for evaluating the resilience of urban road traffic network under flood disaster: An example of Nanjing, China.

来自 PUBMED

作者:

Li DZhu XHuang GFeng HZhu SLi X

展开

摘要:

Urban road traffic network (URTN) plays an important role in city operation, while it is also suffered a lot from the urban flood disasters which caused negative impacts frequently, like traffic congestion, and road collapse. The function loss of URTN not only destroy normal urban life and work order, but also pose a serious threat to people's lives and properties. Therefore, it is urgent to quantitatively explore the flood resilience of URTN. The concept of resilience puts forward new ideas to help solve the problem of urban flooding disasters from a holistic view. Exploring the flood resilience of urban traffic network may help to mitigate urban flooding and improve the urban resilience. This paper developed a flood resilience evaluation model of URTN, which contains 26 indicators based on the 4R theory. A case study was conducted in southern China to validate the model with real data. It evaluated the urban flood resilience of road traffic network with a comparison of before and after reconstruction of the pipeline. The results demonstrated that the flood resilience of URTN is at a relatively low level in the study area, and the limitation of single traditional engineering measure to the flood resilience of URTN. Suggestions such as strengthening the citizen participation and enhancing the complementary capability of multiple engineering measures are proposed to further promote the flood resilience of the URTN.

收起

展开

DOI:

10.1007/s11356-022-19142-w

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(291)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读