-
Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal.
The applicability of wastewater-based epidemiology (WBE) has been extensively studied throughout the world with remarkable findings. This study reports the presence and reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at two wastewater treatment plants (WWTPs) of Nepal, along with river water, hospital wastewater (HWW), and wastewater from sewer lines collected between July 2020 and February 2021. SARS-CoV-2 RNA was detected in 50%, 54%, 100%, and 100% of water samples from WWTPs, river hospitals, and sewer lines, respectively, by at least one of four quantitative PCR assays tested (CDC-N1, CDC-N2, NIID_2019-nCOV_N, and N_Sarbeco). The CDC-N2 assay detected SARS-CoV-2 RNA in the highest number of raw influent samples of both WWTPs. The highest concentration was observed for an influent sample of WWTP A (5.5 ± 1.0 log10 genome copies/L) by the N_Sarbeco assay. SARS-CoV-2 was detected in 47% (16/34) of the total treated effluents of WWTPs, indicating that biological treatments installed at the tested WWTPs are not enough to eliminate SARS-CoV-2 RNA. One influent sample was positive for N501Y mutation using the mutation-specific qPCR, highlighting a need for further typing of water samples to detect Variants of Concern. Furthermore, crAssphage-normalized SARS-CoV-2 RNA concentrations in raw wastewater did not show any significant association with the number of new coronavirus disease 2019 (COVID-19) cases in the whole district where the WWTPs were located, suggesting a need for further studies focusing on suitability of viral as well as biochemical markers as a population normalizing factor. Detection of SARS-CoV-2 RNA before, after, and during the peaking in number of COVID-19 cases suggests that WBE is a useful tool for COVID-19 case estimation in developing countries.
Tandukar S
,Sthapit N
,Thakali O
,Malla B
,Sherchan SP
,Shakya BM
,Shrestha LP
,Sherchand JB
,Joshi DR
,Lama B
,Haramoto E
... -
《-》
-
First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan.
Wastewater-based epidemiology is a powerful tool to understand the actual incidence of coronavirus disease 2019 (COVID-19) in a community because severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, can be shed in the feces of infected individuals regardless of their symptoms. The present study aimed to assess the presence of SARS-CoV-2 RNA in wastewater and river water in Yamanashi Prefecture, Japan, using four quantitative and two nested PCR assays. Influent and secondary-treated (before chlorination) wastewater samples and river water samples were collected five times from a wastewater treatment plant and three times from a river, respectively, between March 17 and May 7, 2020. The wastewater and river water samples (200-5000 mL) were processed by using two different methods: the electronegative membrane-vortex (EMV) method and the membrane adsorption-direct RNA extraction method. Based on the observed concentrations of indigenous pepper mild mottle virus RNA, the EMV method was found superior to the membrane adsorption-direct RNA extraction method. SARS-CoV-2 RNA was successfully detected in one of five secondary-treated wastewater samples with a concentration of 2.4 × 103 copies/L by N_Sarbeco qPCR assay following the EMV method, with sequence confirmation of the qPCR product, whereas all the influent samples were tested negative for SARS-CoV-2 RNA. This result could be attributed to higher limit of detection for influent (4.0 × 103-8.2 × 104 copies/L) with a lower filtration volume (200 mL) compared to that for secondary-treated wastewater (1.4 × 102-2.5 × 103 copies/L) with a higher filtration volume of 5000 mL. None of the river water samples tested positive for SARS-CoV-2 RNA. Comparison with the reported COVID-19 cases in Yamanashi Prefecture showed that SARS-CoV-2 RNA was detected in the secondary-treated wastewater sample when the cases peaked in the community. This is the first study reporting the detection of SARS-CoV-2 RNA in wastewater in Japan.
Haramoto E
,Malla B
,Thakali O
,Kitajima M
... -
《-》
-
Time Evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Wastewater during the First Pandemic Wave of COVID-19 in the Metropolitan Area of Barcelona, Spain.
Two large wastewater treatment plants (WWTP), covering around 2.7 million inhabitants, which represents around 85% of the metropolitan area of Barcelona, were sampled before, during, and after the implementation of a complete lockdown. Five one-step reverse transcriptase quantitative PCR (RT-qPCR) assays, targeting the polymerase (IP2 and IP4), the envelope (E), and the nucleoprotein (N1 and N2) genome regions, were employed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection in 24-h composite wastewater samples concentrated by polyethylene glycol (PEG) precipitation. SARS-CoV-2 was detected in a sewage sample collected 41 days ahead of the declaration of the first COVID-19 case. The evolution of SARS-CoV-2 genome copies in wastewater evidenced the validity of water-based epidemiology (WBE) to anticipate COVID-19 outbreaks, to evaluate the impact of control measures, and even to estimate the burden of shedders, including presymptomatic, asymptomatic, symptomatic, and undiagnosed cases. For the latter objective, a model was applied for the estimation of the total number of shedders, evidencing a high proportion of asymptomatic infected individuals. In this way, an infection prevalence of 2.0 to 6.5% was figured. On the other hand, proportions of around 0.12% and 0.09% of the total population were determined to be required for positive detection in the two WWTPs. At the end of the lockdown, SARS-CoV-2 RNA apparently disappeared in the WWTPs but could still be detected in grab samples from four urban sewers. Sewer monitoring allowed for location of specific hot spots of COVID-19, enabling the rapid adoption of appropriate mitigation measures.IMPORTANCE Water-based epidemiology (WBE) is a valuable early warning tool for tracking the circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among the population, including not only symptomatic patients but also asymptomatic, presymptomatic, and misdiagnosed carriers, which represent a high proportion of the infected population. In the specific case of Barcelona, wastewater surveillance anticipated by several weeks not only the original COVID-19 pandemic wave but also the onset of the second wave. In addition, SARS-CoV-2 occurrence in wastewater evidenced the efficacy of the adopted lockdown measures on the circulation of the virus. Health authorities profited from WBE to complement other inputs and adopt rapid and adequate measures to mitigate the effects of the pandemic. For example, sentinel surveillance of specific sewers helped to locate COVID-19 hot spots and to conduct massive numbers of RT-PCR tests among the population.
Chavarria-Miró G
,Anfruns-Estrada E
,Martínez-Velázquez A
,Vázquez-Portero M
,Guix S
,Paraira M
,Galofré B
,Sánchez G
,Pintó RM
,Bosch A
... -
《-》
-
Quantification of multiple respiratory viruses in wastewater in the Kathmandu Valley, Nepal: Potential implications of wastewater-based epidemiology for community disease surveillance in developing countries.
Despite being the major cause of death, clinical surveillance of respiratory viruses at the community level is very passive, especially in developing countries. This study focused on the surveillance of three respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IFV-A), and respiratory syncytial virus (RSV)] in the Kathmandu Valley, Nepal, by implication of wastewater-based epidemiology (WBE). Fifty-one untreated wastewater samples were from two wastewater treatment plants (WWTPs) between April and October 2022. Among eight combinations of the pre-evaluated methods, the combination of concentration by simple centrifugation, pretreatment by DNA/RNA Shield (Zymo Research), and extraction by the QIAamp Viral RNA Mini Kit (QIAGEN) showed the best performance for detecting respiratory viruses. Using this method with a one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR), SARS-CoV-2 RNA was successfully detected from both WWTPs (positive ratio, 100 % and 81 %) at concentrations of 5.6 ± 0.6 log10 copies/L from each WWTP. Forty-six SARS-CoV-2 RNA-positive samples were further tested for three mutation site-specific one-step RT-qPCR (L452R, T478K, and E484A/G339D), where G339D/E484A mutations were frequently detected in both WWTPs (96 %). IFV-A RNA was more frequently detected in WWTP A (84 %) compared to WWTP B (38 %). RSV RNA was also detected in both WWTPs (28 % and 8 %, respectively). This is the first study on detecting IFV-A and RSV in wastewater in Nepal, showing the applicability and importance of WBE for respiratory viruses in developing countries where clinical data are lacking.
Raya S
,Malla B
,Shrestha S
,Sthapit N
,Kattel H
,Sharma ST
,Tuladhar R
,Maharjan R
,Takeda T
,Kitajima M
,Tandukar S
,Haramoto E
... -
《-》
-
Detection and quantification of SARS-CoV-2 RNA in wastewater influent in relation to reported COVID-19 incidence in Finland.
Wastewater-based surveillance is a cost-effective concept for monitoring COVID-19 pandemics at a population level. Here, SARS-CoV-2 RNA was monitored from a total of 693 wastewater (WW) influent samples from 28 wastewater treatment plants (WWTP, N = 21-42 samples per WWTP) in Finland from August 2020 to May 2021, covering WW of ca. 3.3 million inhabitants (∼ 60% of the Finnish population). Quantity of SARS-CoV-2 RNA fragments in 24 h-composite samples was determined by using the ultrafiltration method followed by nucleic acid extraction and CDC N2 RT-qPCR assay. SARS-CoV-2 RNA signals at each WWTP were compared over time to the numbers of confirmed COVID-19 cases (14-day case incidence rate) in the sewer network area. Over the 10-month surveillance period with an extensive total number of samples, the detection rate of SARS-CoV-2 RNA in WW was 79% (including 6% uncertain results, i.e., amplified only in one out of four, two original and two ten-fold diluted replicates), while only 24% of all samples exhibited gene copy numbers above the quantification limit. The range of the SARS-CoV-2 detection rate in WW varied from 33% (including 10% uncertain results) in Pietarsaari to 100% in Espoo. Only six out of 693 WW samples were positive with SARS-COV-2 RNA when the reported COVID-19 case number from the preceding 14 days was zero. Overall, the 14-day COVID-19 incidence was 7.0, 18, and 36 cases per 100 000 persons within the sewer network area when the probability to detect SARS-CoV-2 RNA in wastewater samples was 50%, 75% and 95%, respectively. The quantification of SARS-CoV-2 RNA required significantly more COVID-19 cases: the quantification rate was 50%, 75%, and 95% when the 14-day incidence was 110, 152, and 223 COVID-19 cases, respectively, per 100 000 persons. Multiple linear regression confirmed the relationship between the COVID-19 incidence and the SARS-CoV-2 RNA quantified in WW at 15 out of 28 WWTPs (overall R2 = 0.36, p < 0.001). At four of the 13 WWTPs where a significant relationship was not found, the SARS-CoV-2 RNA remained below the quantification limit during the whole study period. In the five other WWTPs, the sewer coverage was less than 80% of the total population in the area and thus the COVID-19 cases may have been inhabitants from the areas not covered. Based on the results obtained, WW-based surveillance of SARS-CoV-2 could be used as an indicator for local and national COVID-19 incidence trends. Importantly, the determination of SARS-CoV-2 RNA fragments from WW is a powerful and non-invasive public health surveillance measure, independent of possible changes in the clinical testing strategies or in the willingness of individuals to be tested for COVID-19.
Tiwari A
,Lipponen A
,Hokajärvi AM
,Luomala O
,Sarekoski A
,Rytkönen A
,Österlund P
,Al-Hello H
,Juutinen A
,Miettinen IT
,Savolainen-Kopra C
,Pitkänen T
... -
《-》