A double-blind randomized controlled trial investigating a time-lapse algorithm for selecting Day 5 blastocysts for transfer.

来自 PUBMED

摘要:

Can use of a commercially available time-lapse algorithm for Day 5 blastocyst selection improve pregnancy rates compared with morphology alone? The use of a time-lapse selection model to choose blastocysts for fresh single embryo transfer on Day 5 did not improve ongoing pregnancy rate compared to morphology alone. Evidence from time-lapse monitoring suggests correlations between timing of key developmental events and embryo viability. No good quality evidence exists to support improved pregnancy rates following time-lapse selection. A prospective multicenter randomized controlled trial including 776 randomized patients was performed between 2018 and 2021. Patients with at least two good quality blastocysts on Day 5 were allocated by a computer randomization program in a proportion of 1:1 into either the control group, whereby single blastocysts were selected for transfer by morphology alone, or the intervention group whereby final selection was decided by a commercially available time-lapse model. The embryologists at the time of blastocyst morphological scoring were blinded to which study group the patients would be randomized, and the physician and patients were blind to which group they were allocated until after the primary outcome was known. The primary outcome was number of ongoing pregnancies in the two groups. From 10 Nordic IVF clinics, 776 patients with a minimum of two good quality blastocysts on Day 5 (D5) were randomized into one of the two study groups. A commercial time-lapse model decided the final selection of blastocysts for 387 patients in the intervention (time-lapse) group, and blastocysts with the highest morphological score were transferred for 389 patients in the control group. Only single embryo transfers in fresh cycles were performed. In the full analysis set, the ongoing pregnancy rate for the time-lapse group was 47.4% (175/369) and 48.1% (181/376) in the control group. No statistically significant difference was found between the two groups: mean difference -0.7% (95% CI -8.2, 6.7, P = 0.90). Pregnancy rate (60.2% versus 59.0%, mean difference 1.1%, 95% CI -6.2, 8.4, P = 0.81) and early pregnancy loss (21.2% versus 18.5%, mean difference 2.7%, 95% CI -5.2, 10.6, P = 0.55) were the same for the time-lapse and the control group. Subgroup analyses showed that patient and treatment characteristics did not significantly affect the commercial time-lapse model D5 performance. In the time-lapse group, the choice of best blastocyst changed on 42% of occasions (154/369, 95% CI 36.9, 47.2) after the algorithm was applied, and this rate was similar for most treatment clinics. During 2020, the patient recruitment rate slowed down at participating clinics owing to coronavirus disease-19 restrictions, so the target sample size was not achieved as planned and it was decided to stop the trial prematurely. The study only investigated embryo selection at the blastocyst stage on D5 in fresh IVF transfer cycles. In addition, only blastocysts of good morphological quality were considered for transfer, limiting the number of embryos for selection in both groups: also, it could be argued that this manual preselection of blastocysts limits the theoretical selection power of time-lapse, as well as restricting the results mainly to a good prognosis patient group. Most patients were aimed for blastocyst stage transfer when a minimum of five zygotes were available for extended culture. Finally, the primary clinical outcome evaluated was pregnancy to only 6-8 weeks. The study suggests that time-lapse selection with a commercially available time-lapse model does not increase chance of ongoing pregnancy after single blastocyst transfer on Day 5 compared to morphology alone. The study was financed by a grant from the Swedish state under the ALF-agreement between the Swedish government and the county councils (ALFGBG-723141). Vitrolife supported the study with embryo culture dishes and culture media. During the study period, T.H. changed his employment from Livio AB to Vitrolife AB. All other authors have no conflicts of interests to disclose. ClinicalTrials.gov registration number NCT03445923. 26 February 2018. 11 June 2018.

收起

展开

DOI:

10.1093/humrep/deac020

被引量:

16

年份:

2022

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(236)

参考文献(45)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读