A neural network model of when to retrieve and encode episodic memories.
摘要:
Recent human behavioral and neuroimaging results suggest that people are selective in when they encode and retrieve episodic memories. To explain these findings, we trained a memory-augmented neural network to use its episodic memory to support prediction of upcoming states in an environment where past situations sometimes reoccur. We found that the network learned to retrieve selectively as a function of several factors, including its uncertainty about the upcoming state. Additionally, we found that selectively encoding episodic memories at the end of an event (but not mid-event) led to better subsequent prediction performance. In all of these cases, the benefits of selective retrieval and encoding can be explained in terms of reducing the risk of retrieving irrelevant memories. Overall, these modeling results provide a resource-rational account of why episodic retrieval and encoding should be selective and lead to several testable predictions.
收起
展开
DOI:
10.7554/eLife.74445
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(247)
参考文献(131)
引证文献(12)
来源期刊
影响因子:8.704
JCR分区: 暂无
中科院分区:暂无