A practical laboratory method to determine ceftazidime-avibactam-aztreonam synergy in patients with New Delhi metallo-beta-lactamase (NDM)-producing Enterobacterales infection.

来自 PUBMED

作者:

Rawson TMBrzeska-Trafny IMaxfield RAlmeida MGilchrist MGonzalo XMoore LSDonaldson HDavies F

展开

摘要:

In response to infection with New Delhi metallo-beta-lactamase (NDM)-producing Enterobacterales, combination antimicrobial therapy with ceftazidime/avibactam (CAZ/AVI) plus aztreonam (ATM) has been explored. This study evaluated a practical laboratory method of testing for clinically significant synergy between CAZ/AVI+ATM in NDM-producing Enterobacterales. Minimum inhibitory concentrations (MICs) of clinical NDM-producing isolates were determined for ATM alone and CAZ/AVI+ATM using broth dilution. Restoration of the ATM breakpoint after the addition of CAZ/AVI was explored. A CAZ/AVI Etest/ATM disc method was compared with broth dilution. Of 43 isolates, 33 (77%) were ATM resistant (median [range] MIC = 56 [16-512] mg/L). Addition of CAZ/AVI restored the ATM breakpoint (MIC <4 mg/L) in 29 of 33 resistant isolates (89%). Overall, the Etest/disc method correlated with the findings from broth dilution in 35 of 43 cases (81%). Etest/disc sensitivity was 77% and specificity 85%. Positive predictive value was 92% and negative predictive value 61%. CAZ/AVI+ATM demonstrated significant synergy in most ATM-resistant NDM-producing Enterobacterales. The Etest/disc method is a quick, reproducible, and reliable method of testing for clinically relevant synergy in the microbiology laboratory.

收起

展开

DOI:

10.1016/j.jgar.2022.01.025

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(170)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读