Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects.
摘要:
Land-use and land-cover change (LULCC) are of importance in natural resource management, environmental modelling and assessment, and agricultural production management. However, LULCC detection and modelling is a complex, data-driven process in the remote sensing field due to the processing of massive historical and current data, real-time interaction of scenario data, and spatial environmental data. In this paper, we review principles and methods of LULCC modelling, using machine learning and beyond, such as traditional cellular automata (CA). Then, we examine the characteristics, capabilities, limitations, and perspectives of machine learning. Machine learning has not yet been dramatic in modelling LULCC, such as urbanization prediction and crop yield prediction because competition and transition between land cover types are dynamic at a local scale under varying natural drivers and human activities. Upcoming challenges of machine learning in modelling LULCC remain in the detection and prediction of LULC evolutionary processes if considering their applicability and feasibility, such as the spatio-temporal transition mechanisms to describe occurrence, transition, spreading, and spatial patterns of changes, availability of training data of all the change drivers, particularly sequence data, and identification and inclusion of local ecological, hydrological, and social-economic drivers in addressing the spectral feature change. This review points out the need for multidisciplinary research beyond image processing and pattern recognition of machine learning in accelerating and advancing studies of LULCC modelling. Despite this, we believe that machine learning has strong potentials to incorporate new exploratory variables in modelling LULCC through expanding remote sensing big data and advancing transient algorithms.
收起
展开
DOI:
10.1016/j.scitotenv.2022.153559
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(215)
参考文献(0)
引证文献(7)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无