Comprehensive Speciation Analysis of Residual Gadolinium in Deep Cerebellar Nuclei in Rats Repeatedly Administered With Gadoterate Meglumine or Gadodiamide.

来自 PUBMED

摘要:

Several preclinical studies have reported the presence of gadolinium (Gd) in different chemical forms in the brain, depending on the class (macrocyclic versus linear) of Gd-based contrast agent (GBCA) administered. The aim of this study was to identify, with a special focus on insoluble species, the speciation of Gd retained in the deep cerebellar nuclei (DCN) of rats administered repeatedly with gadoterate or gadodiamide 4 months after the last injection. Three groups (N = 6/group) of healthy female Sprague-Dawley rats (SPF/OFA rats; Charles River, L'Arbresle, France) received a cumulated dose of 50 mmol/kg (4 daily intravenous administrations of 2.5 mmol/kg, for 5 weeks, corresponding to 80-fold the usual clinical dose if adjusted for man) of gadoterate meglumine (macrocyclic) or gadodiamide (linear) or isotonic saline for the control group (4 daily intravenous administrations of 5 mL/kg, for 5 weeks). The animals were sacrificed 4 months after the last injection. Deep cerebellar nuclei were dissected and stored at -80°C before sample preparation. To provide enough tissue for sample preparation and further analysis using multiple techniques, DCN from each group of 6 rats were pooled. Gadolinium species were extracted in 2 consecutive steps with water and urea solution. The total Gd concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). Soluble Gd species were analyzed by size-exclusion chromatography coupled to ICP-MS. The insoluble Gd species were analyzed by single-particle (SP) ICP-MS, nanoscale secondary ion mass spectroscopy (NanoSIMS), and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX) for elemental detection. The Gd concentrations in pooled DCN from animals treated with gadoterate or gadodiamide were 0.25 and 24.3 nmol/g, respectively. For gadoterate, the highest amount of Gd was found in the water-soluble fractions. It was present exclusively as low-molecular-weight compounds, most likely as the intact GBCA form. In the case of gadodiamide, the water-soluble fraction of DCN was composed of high-molecular-weight Gd species of approximately 440 kDa and contained only a tiny amount (less than 1%) of intact gadodiamide. Furthermore, the column recovery calculated for this fraction was incomplete, which suggested presence of labile complexes of dissociated Gd3+ with endogenous molecules. The highest amount of Gd was detected in the insoluble residue, which was demonstrated, by SP-ICP-MS, to be a particulate form of Gd. Two imaging techniques (NanoSIMS and STEM-EDX) allowed further characterization of these insoluble Gd species. Amorphous, spheroid structures of approximately 100-200 nm of sea urchin-like shape were detected. Furthermore, Gd was consistently colocalized with calcium, oxygen, and phosphorous, strongly suggesting the presence of structures composed of mixed Gd/Ca phosphates. No or occasional colocalization with iron and sulfur was observed. A dedicated analytical workflow produced original data on the speciation of Gd in DCN of rats repeatedly injected with GBCAs. The addition, in comparison with previous studies of Gd speciation in brain, of SP element detection and imaging techniques allowed a comprehensive speciation analysis approach. Whereas for gadoterate the main fraction of retained Gd was present as intact GBCA form in the soluble fractions, for linear gadodiamide, less than 10% of Gd could be solubilized and characterized using size-exclusion chromatography coupled to ICP-MS. The main Gd species detected in the soluble fractions were macromolecules of 440 kDa. One of them was speculated to be a Gd complex with iron-binding protein (ferritin). However, the major fraction of residual Gd was present as insoluble particulate species, very likely composed of mixed Gd/Ca phosphates. This comprehensive Gd speciation study provided important evidence for the dechelation of linear GBCAs and offered a deeper insight into the mechanisms of Gd deposition in the brain.

收起

展开

DOI:

10.1097/RLI.0000000000000846

被引量:

3

年份:

2022

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(159)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读