-
Immunogenicity and Reactogenicity of Vaccine Boosters after Ad26.COV2.S Priming.
The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear.
In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting.
Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration.
The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).
Sablerolles RSG
,Rietdijk WJR
,Goorhuis A
,Postma DF
,Visser LG
,Geers D
,Schmitz KS
,Garcia Garrido HM
,Koopmans MPG
,Dalm VASH
,Kootstra NA
,Huckriede ALW
,Lafeber M
,van Baarle D
,GeurtsvanKessel CH
,de Vries RD
,van der Kuy PHM
,SWITCH Research Group
... -
《-》
-
Homologous and Heterologous Covid-19 Booster Vaccinations.
Although the three vaccines against coronavirus disease 2019 (Covid-19) that have received emergency use authorization in the United States are highly effective, breakthrough infections are occurring. Data are needed on the serial use of homologous boosters (same as the primary vaccine) and heterologous boosters (different from the primary vaccine) in fully vaccinated recipients.
In this phase 1-2, open-label clinical trial conducted at 10 sites in the United States, adults who had completed a Covid-19 vaccine regimen at least 12 weeks earlier and had no reported history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection received a booster injection with one of three vaccines: mRNA-1273 (Moderna) at a dose of 100 μg, Ad26.COV2.S (Johnson & Johnson-Janssen) at a dose of 5×1010 virus particles, or BNT162b2 (Pfizer-BioNTech) at a dose of 30 μg. The primary end points were safety, reactogenicity, and humoral immunogenicity on trial days 15 and 29.
Of the 458 participants who were enrolled in the trial, 154 received mRNA-1273, 150 received Ad26.COV2.S, and 153 received BNT162b2 as booster vaccines; 1 participant did not receive the assigned vaccine. Reactogenicity was similar to that reported for the primary series. More than half the recipients reported having injection-site pain, malaise, headache, or myalgia. For all combinations, antibody neutralizing titers against a SARS-CoV-2 D614G pseudovirus increased by a factor of 4 to 73, and binding titers increased by a factor of 5 to 55. Homologous boosters increased neutralizing antibody titers by a factor of 4 to 20, whereas heterologous boosters increased titers by a factor of 6 to 73. Spike-specific T-cell responses increased in all but the homologous Ad26.COV2.S-boosted subgroup. CD8+ T-cell levels were more durable in the Ad26.COV2.S-primed recipients, and heterologous boosting with the Ad26.COV2.S vaccine substantially increased spike-specific CD8+ T cells in the mRNA vaccine recipients.
Homologous and heterologous booster vaccines had an acceptable safety profile and were immunogenic in adults who had completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by the National Institute of Allergy and Infectious Diseases; DMID 21-0012 ClinicalTrials.gov number, NCT04889209.).
Atmar RL
,Lyke KE
,Deming ME
,Jackson LA
,Branche AR
,El Sahly HM
,Rostad CA
,Martin JM
,Johnston C
,Rupp RE
,Mulligan MJ
,Brady RC
,Frenck RW Jr
,Bäcker M
,Kottkamp AC
,Babu TM
,Rajakumar K
,Edupuganti S
,Dobrzynski D
,Coler RN
,Posavad CM
,Archer JI
,Crandon S
,Nayak SU
,Szydlo D
,Zemanek JA
,Dominguez Islas CP
,Brown ER
,Suthar MS
,McElrath MJ
,McDermott AB
,O'Connell SE
,Montefiori DC
,Eaton A
,Neuzil KM
,Stephens DS
,Roberts PC
,Beigel JH
,DMID 21-0012 Study Group
... -
《-》
-
Safety, reactogenicity, and immunogenicity of Ad26.COV2.S as homologous or heterologous COVID-19 booster vaccination: Results of a randomized, double-blind, phase 2 trial.
COVID-19 vaccine boosters may optimize durability of protection against variants of concern (VOCs). In this randomized, double-blind, phase 2 trial, participants received 3 different dose levels of an Ad26.COV2.S booster (5 × 1010 vp [viral particles], 2.5 × 1010 vp, or 1 × 1010 vp) ≥6 months post-primary vaccination with either single-dose Ad26.COV2.S (homologous boost; n = 774) or 2-dose BNT162b2 (heterologous boost; n = 758). Primary endpoints were noninferiority of neutralizing antibody responses at Day 15 post-boost versus Day 29 post-primary vaccination. Secondary endpoints included reactogenicity/safety and neutralizing antibody responses to VOCs. All primary endpoints passed prespecified hierarchical noninferiority criteria by Day 15 post-boost. Geometric mean increases in neutralizing antibody titers against the D614G reference strain ranged from 5.5 to 6.8 at Day 15 for homologous boosting and 12.6 to 22.0 for heterologous boosting. For VOCs, heterologous boosting elicited higher neutralizing antibody responses than homologous boosting. Neutralizing antibody responses were dose-dependent and durable for ≥6 months post-boost. More solicited systemic adverse events occurred following heterologous versus homologous boosting. Trial Registration:ClinicalTrials.gov Identifier: NCT04999111.
Le Gars M
,Sadoff J
,Cárdenas V
,Heerwegh D
,Tesfaye F
,Roey GV
,Spicer C
,Matias SS
,Crayne O
,Kamphuis T
,Struyf F
,Schuitemaker H
,Douoguih M
... -
《-》
-
Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study.
The inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac, Sinovac) has been widely used in a two-dose schedule. We assessed whether a third dose of the homologous or a different vaccine could boost immune responses.
RHH-001 is a phase 4, participant masked, two centre, safety and immunogenicity study of Brazilian adults (18 years and older) in São Paulo or Salvador who had received two doses of CoronaVac 6 months previously. The third heterologous dose was of either a recombinant adenoviral vectored vaccine (Ad26.COV2-S, Janssen), an mRNA vaccine (BNT162b2, Pfizer-BioNTech), or a recombinant adenoviral-vectored ChAdOx1 nCoV-19 vaccine (AZD1222, AstraZeneca), compared with a third homologous dose of CoronaVac. Participants were randomly assigned (5:6:5:5) by a RedCAP computer randomisation system stratified by site, age group (18-60 years or 61 years and over), and day of randomisation, with a block size of 42. The primary outcome was non-inferiority of anti-spike IgG antibodies 28 days after the booster dose in the heterologous boost groups compared with homologous regimen, using a non-inferiority margin for the geometric mean ratio (heterologous vs homologous) of 0·67. Secondary outcomes included neutralising antibody titres at day 28, local and systemic reactogenicity profiles, adverse events, and serious adverse events. This study was registered with Registro Brasileiro de Ensaios Clínicos, number RBR-9nn3scw.
Between Aug 16, and Sept 1, 2021, 1240 participants were randomly assigned to one of the four groups, of whom 1239 were vaccinated and 1205 were eligible for inclusion in the primary analysis. Antibody concentrations were low before administration of a booster dose with detectable neutralising antibodies of 20·4% (95% CI 12·8-30·1) in adults aged 18-60 years and 8·9% (4·2-16·2) in adults 61 years or older. From baseline to day 28 after the booster vaccine, all groups had a substantial rise in IgG antibody concentrations: the geometric fold-rise was 77 (95% CI 67-88) for Ad26.COV2-S, 152 (134-173) for BNT162b2, 90 (77-104) for ChAdOx1 nCoV-19, and 12 (11-14) for CoronaVac. All heterologous regimens had anti-spike IgG responses at day 28 that were superior to homologous booster responses: geometric mean ratios (heterologous vs homologous) were 6·7 (95% CI 5·8-7·7) for Ad26.COV2-S, 13·4 (11·6-15·3) for BNT162b2, and 7·0 (6·1-8·1) for ChAdOx1 nCoV-19. All heterologous boost regimens induced high concentrations of pseudovirus neutralising antibodies. At day 28, all groups except for the homologous boost in the older adults reached 100% seropositivity: geometric mean ratios (heterologous vs homologous) were 8·7 (95% CI 5·9-12·9) for Ad26.COV2-S vaccine, 21·5 (14·5-31·9) for BNT162b2, and 10·6 (7·2-15·6) for ChAdOx1 nCoV-19. Live virus neutralising antibodies were also boosted against delta (B.1.617.2) and omicron variants (B.1.1.529). There were five serious adverse events. Three of which were considered possibly related to the vaccine received: one in the BNT162b2 group and two in the Ad26.COV2-S group. All participants recovered and were discharged home.
Antibody concentrations were low at 6 months after previous immunisation with two doses of CoronaVac. However, all four vaccines administered as a third dose induced a significant increase in binding and neutralising antibodies, which could improve protection against infection. Heterologous boosting resulted in more robust immune responses than homologous boosting and might enhance protection.
Ministry of Health, Brazil.
Costa Clemens SA
,Weckx L
,Clemens R
,Almeida Mendes AV
,Ramos Souza A
,Silveira MBV
,da Guarda SNF
,de Nobrega MM
,de Moraes Pinto MI
,Gonzalez IGS
,Salvador N
,Franco MM
,de Avila Mendonça RN
,Queiroz Oliveira IS
,de Freitas Souza BS
,Fraga M
,Aley P
,Bibi S
,Cantrell L
,Dejnirattisai W
,Liu X
,Mongkolsapaya J
,Supasa P
,Screaton GR
,Lambe T
,Voysey M
,Pollard AJ
,RHH-001 study team
... -
《-》
-
Heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination against SARS-CoV-2 infection: 1-year follow-up of a phase 1/2 open-label trial.
Inactivated whole-virus vaccination elicits immune responses to both SARS-CoV-2 nucleocapsid (N) and spike (S) proteins, like natural infections. A heterologous Ad26.COV2.S booster given at two different intervals after primary BBIBP-CorV vaccination was safe and immunogenic at days 28 and 84, with higher immune responses observed after the longer pre-boost interval. We describe booster-specific and hybrid immune responses over 1 year.
This open-label phase 1/2 study was conducted in healthy Thai adults aged ≥ 18 years who had completed primary BBIBP-CorV primary vaccination between 90-240 (Arm A1; n = 361) or 45-75 days (Arm A2; n = 104) before enrolment. All received an Ad26.COV2.S booster. We measured anti-S and anti-N IgG antibodies by Elecsys®, neutralizing antibodies by SARS-CoV-2 pseudovirus neutralization assay, and T-cell responses by quantitative interferon (IFN)-γ release assay. Immune responses were evaluated in the baseline-seronegative population (pre-booster anti-N < 1.4 U/mL; n = 241) that included the booster-effect subgroup (anti-N < 1.4 U/mL at each visit) and the hybrid-immunity subgroup (anti-N ≥ 1.4 U/mL and/or SARS-CoV-2 infection, irrespective of receiving non-study COVID-19 boosters).
In Arm A1 of the booster-effect subgroup, anti-S GMCs were 131-fold higher than baseline at day 336; neutralizing responses against ancestral SARS-CoV-2 were 5-fold higher than baseline at day 168; 4-fold against Omicron BA.2 at day 84. IFN-γ remained approximately 4-fold higher than baseline at days 168 and 336 in 18-59-year-olds. Booster-specific responses trended lower in Arm A2. In the hybrid-immunity subgroup at day 336, anti-S GMCs in A1 were 517-fold higher than baseline; neutralizing responses against ancestral SARS-CoV-2 and Omicron BA.2 were 28- and 31-fold higher, respectively, and IFN-γ was approximately 14-fold higher in 18-59-year-olds at day 336. Durable immune responses trended lower in ≥ 60-year-olds.
A heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination induced booster-specific immune responses detectable up to 1 year that were higher in participants with hybrid immunity.
NCT05109559.
Muangnoicharoen S
,Wiangcharoen R
,Lawpoolsri S
,Nanthapisal S
,Jongkaewwattana A
,Duangdee C
,Kamolratanakul S
,Luvira V
,Thanthamnu N
,Chantratita N
,Thitithanyanont A
,Anh Wartel T
,Excler JL
,Ryser MF
,Leong C
,Mak TK
,Pitisuttithum P
... -
《-》