Extracellular vesicles carry miR-27a-3p to promote drug resistance of glioblastoma to temozolomide by targeting BTG2.

来自 PUBMED

作者:

Chen LLi ZHu SDeng QHao PGuo S

展开

摘要:

Glioblastoma (GBM) is the most common central nervous system tumor. Temozolomide (TMZ) is a commonly used drug for GBM management. This study explored the mechanism of extracellular vesicles (EVs) regulating TMZ-resistance in GBM. LN229 cells were inducted into TMZ-resistant LN229r strain by stepwise induction. After the intervention of miR-27a-3p expression, cell viability of GBM cells treated with different concentrations of TMZ was detected by MTT and IC50 value was calculated. Cell proliferation and apoptosis were detected by colony formation and flow cytometry. EVs extracted from LN18 cells were identified and the internalization of EVs by LN229r cells was evaluated. The 100 μmol/L TMZ-treated LN229r cells were treated with EVs or EVs with downregulated miR-27a-3p to verify the effect of EVs-carried miR-27a-3p on TMZ resistance. The binding relation between BTG2 and miR-27a-3p was verified. miR-27a-3p and BTG2 expressions in GBM cells and EVs were detected by RT-qPCR. The BTG2 effect on TMZ-resistance in GBM was verified. The xenograft tumor nude mouse model was established by injecting LN229r cells and treated with EVs and 100 μmol/L TMZ. miR-27a-3p was highly expressed in LN229r cells. IC50 value and proliferation of LN229r cells with silenced miR-27a-3p were decreased and apoptosis was increased, indicating that miR-27a-3p silencing reduced the drug-resistant cell LN229r resistance to TMZ. LN18-derived EVs could be internalized by LN229r cells, and release its encapsulated miR-27a-3p into LN229r cells and increase miR-27a-3p expression. EV treatment increased LN229r cell proliferation and reduced apoptosis, while EVs with silenced miR-27a-3p showed the opposite trend. miR-27a-3p targeted BTG2. BTG2 overexpression reduced LN229r cell resistance to TMZ. In vivo, after EVs treatment, tumor volume and weight, Ki67-positive rate, and miR-27a-3p were increased, while BTG2 expression was decreased. GBM-derived EVs were internalized by GBM cells, released miR-27a-3p into GBM cells, upregulated miR-27a-3p expression, and targeted BTG2, thus promoting TMZ resistance.

收起

展开

DOI:

10.1007/s00280-021-04392-1

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(708)

参考文献(29)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读